论文标题
部分可观测时空混沌系统的无模型预测
High-Performance Silicon Photonic Single-Sideband Modulators for Cold Atom Interferometry
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The most complicated and challenging system within a light-pulse atom interferometer (LPAI) is the laser system, which controls the frequencies and intensities of multiple laser beams over time to configure quantum gravity and inertial sensors. The main function of an LPAI laser system is to perform cold-atom generation, state-preparation, state-selective detection and to generate coherent two-photon process for the light-pulse sequence. Substantial miniaturization and ruggedization of the laser system can be achieved by bringing most key functions of the laser system onto photonic integrated circuit (PIC). We demonstrate a high-performance silicon photonic suppressed-carrier single-sideband (SC-SSB) modulator at 1560 nm, which can dynamically frequency shift within the LPAI. With independent RF-channel control, we study the imbalances in both the optical and RF phases/amplitudes to reach 30 dB carrier-suppression, unprecedented 47.8 dB sideband-suppression at peak conversion-efficiency: -6.846 dB (20.7 %). Using a silicon photonic SSB-modulator, we demonstrate cold-atom generation, state-selective detection, and atom interferometer fringes to estimate gravitational acceleration, $g \approx 9.77 \pm 0.01 \,\rm{m/s^2}$, in a Rubidium ($^{87}$Rb) atom system.