论文标题

通过在腔中强烈的光耦合对深色单层半导体的亮度

Brightening of a dark monolayer semiconductor via strong light-matter coupling in a cavity

论文作者

Shan, Hangyong, Iorsh, Ivan, Han, Bo, Rupprecht, Christoph, Knopf, Heiko, Eilenberger, Falk, Esmann, Martin, Yumigeta, Kentaro, Watanabe, Kenji, Taniguchi, Takashi, Klembt, Sebastian, Höfling, Sven, Tongay, Sefaattin, Antón-Solanas, Carlos, Shelykh, Ivan A., Schneider, Christian

论文摘要

通过强烈的光结合量量子材料的特性是一个引人注目的研究方向,具有多​​种现代应用。这些范围从有机分子中的电荷转运,转向颗粒相关性和相互作用,甚至控制化学反应。在这里,我们通过强耦合研究了材料特性的修饰,并在WSE2的单层中表现出具有旋转式孔隙式,光学上的深色基态状态的激子带订购的有效反转。在我们的实验中,我们利用腔体光子和高能之间的强光结合,旋转的明亮激子,从而在光学带隙中创建了两个明亮的极性模式,下极polariton模式将下方推到WSE2黑暗状态下方。我们证明,在这种制度中,通常可以预防从快速松弛到深色地面状态的通常观察到的发光淬火,从而导致这种本质上的深色材料的变亮。我们根据温度依赖性光致发光探测这种有效的亮度,并发现与理论模型相关的一致性,该模型计算了带顺序的反转和声子辅助的极化子松弛。

Engineering the properties of quantum materials via strong light-matter coupling is a compelling research direction with a multiplicity of modern applications. Those range from modifying charge transport in organic molecules, steering particle correlation and interactions, and even controlling chemical reactions. Here, we study the modification of the material properties via strong coupling and demonstrate an effective inversion of the excitonic band-ordering in a monolayer of WSe2 with spin-forbidden, optically dark ground state. In our experiments, we harness the strong light-matter coupling between cavity photon and the high energy, spin-allowed bright exciton, and thus creating two bright polaritonic modes in the optical bandgap with the lower polariton mode pushed below the WSe2 dark state. We demonstrate that in this regime the commonly observed luminescence quenching stemming from the fast relaxation to the dark ground state is prevented, which results in the brightening of this intrinsically dark material. We probe this effective brightening by temperature-dependent photoluminescence, and we find an excellent agreement with a theoretical model accounting for the inversion of the band ordering and phonon-assisted polariton relaxation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源