论文标题
大型干涉仪(生命):VII。通过讨论工具性不确定性和冗余福利的讨论,实际实施了五型内核内核束组合。
Large Interferometer For Exoplanets (LIFE): VII. Practical implementation of a five-telescope kernel-nulling beam combiner with a discussion on instrumental uncertainties and redundancy benefits
论文作者
论文摘要
(简略) 上下文:在本系列的上一篇文章中,我们确定了使用五个望远镜的五边形布置使用内核取消梁组合仪,对于一些重要的性能指标而言,对于在其他几种考虑的型号的配置方面,对于检测太阳能型外科体型型号围绕Solar-type type type type type typepepe typepe type type type typepe parts而言,一些重要的性能指标具有显着优势。 目的:我们旨在为这种配置生成物理实施,并对与仪器相关的系统和随机错误进行讨论。 方法:我们围绕空的光束组合仪开发了数学框架,然后将其与空间干涉模拟器一起使用,以识别系统不确定性的效果。 结果:我们发现Beam Combiner光学器件,系统相误差和RMS附带跟踪错误的错误导致仪器有限的性能,$ \ sim $ 4-7 $μ$ m,ZODIACAL LIMITED $ \ gtrsim $ \ gtrsim $ 10 $μ$ m。假设$ |ΔR|的光束分离器反射率误差| = 5 \%$和相移误差为$ δϕ = 3 $度,我们发现,附带跟踪RMS应保持在不到3 nm的位置,以便受到光子的限制,并且系统的活塞误差小于0.5 nm,以使行星适当敏感,对比1 $ \ \ \ \ \ \ 7} $ \ 7} $ 4-19 $ $ MORTAST。我们还确定,横梁组合器设计(包括一个位置良好的快门)提供了产生可观察的内核可观察物的能力,即使一个或两个收集的望远镜失败。当将四个望远镜组合器放入X阵列形成中时,将产生一个传输图,其相对信噪比的比率相当于功能齐全的X阵列组合器的80%。
(Abridged) Context: In the previous paper in this series, we identified that a pentagonal arrangement of five telescopes, using a kernel-nulling beam combiner, shows notable advantages for some important performance metrics for a space-based mid-infrared nulling interferometer over several other considered configurations for the detection of Earth-like exoplanets around solar-type stars. Aims: We aim to produce a physical implementation of a kernel-nulling beam combiner for such a configuration, as well as a discussion of systematic and stochastic errors associated with the instrument. Methods: We developed a mathematical framework around a nulling beam combiner, and then used it along with a space interferometry simulator to identify the effects of systematic uncertainties. Results: We find that errors in the beam combiner optics, systematic phase errors and the RMS fringe tracking errors result in instrument limited performance at $\sim$4-7 $μ$m, and zodiacal limited at $\gtrsim$10 $μ$m. Assuming a beam splitter reflectance error of $|ΔR| = 5\%$ and phase shift error of $Δϕ= 3$ degrees, we find that the fringe tracking RMS should be kept to less than 3 nm in order to be photon limited, and the systematic piston error be less than 0.5 nm to be appropriately sensitive to planets with a contrast of 1$\times 10^{-7}$ over a 4-19 $μ$m bandpass. We also identify that the beam combiner design, with the inclusion of a well positioned shutter, provides an ability to produce robust kernel observables even if one or two collecting telescopes were to fail. The resulting four telescope combiner, when put into an X-array formation, results in a transmission map with a relative signal-to-noise ratio equivalent to 80% of the fully functioning X-array combiner.