论文标题
在较高的Brézin-gross-witten Tau功能上
On higher Brézin-Gross-Witten tau-functions
论文作者
论文摘要
在本文中,我们考虑了由矩阵积分给出的较高的brézin-gross-gross-witten tau函数。对于这些tau函数,我们构建了规范的kac-schwarz运算符,量子光谱曲线和$ w^{(3)} $ - 约束。对于最简单的代表,我们构建了切割和加入操作员,该操作员描述了拓扑递归的代数版本。我们还研究了较高的brézin-gross-witten tau功能的一项参数概括。
In this paper, we consider the higher Brézin--Gross--Witten tau-functions, given by the matrix integrals. For these tau-functions we construct the canonical Kac--Schwarz operators, quantum spectral curves, and $W^{(3)}$-constraints. For the simplest representative we construct the cut-and-join operators, which describe the algebraic version of the topological recursion. We also investigate a one-parametric generalization of the higher Brézin--Gross--Witten tau-functions.