论文标题

希尔伯特空间上的同性群的不变子空间

Invariant subspaces of idempotents on Hilbert spaces

论文作者

Bala, Neeru, Ghosh, Nirupam, Sarkar, Jaydeb

论文摘要

在Hilbert空间上的操作员的设置中,我们证明,当且仅当每对带有准疗法换向器的识别者都有一个非平淡无奇的公共封闭不变的不变的子空间时,每个准掌操作员都有一个非平凡的封闭不变子空间。我们还提出了基本上是基本势力的基本群体的不变子空间的几何表征和对操作员进行分类。

In the setting of operators on Hilbert spaces, we prove that every quasinilpotent operator has a non-trivial closed invariant subspace if and only if every pair of idempotents with a quasinilpotent commutator has a non-trivial common closed invariant subspace. We also present a geometric characterization of invariant subspaces of idempotents and classify operators that are essentially idempotent.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源