论文标题
组合和霍奇·拉普拉斯人:相似性和差异
Combinatorial and Hodge Laplacians: Similarity and Difference
论文作者
论文摘要
作为光谱几何学和组合图理论中的关键主题,(连续的)霍奇拉普拉斯和组合拉普拉斯(Combinatorial Laplacian)在揭示数据的拓扑维度和几何形状以及实现谐波测量的扩散和最小化方面具有相似之处。人们认为,他们都通过渐变,卷曲和差异与矢量演算相关,正如文献中流行的“霍奇·拉普拉斯人”的流行用法中所论述的。然而,这些拉普拉斯人在定义领域和适用于特定数据格式的适用性上本质上有所不同,从而阻碍了两种方法的任何深入比较。 为了促进比较和弥合组合拉普拉斯和霍奇·拉普拉斯(Hodge laplacian)之间的差距,以便使用离散的外部计算(DEC)的工具,进一步引入了边界诱导的图形(大)laplacians。在具有适当边界条件的离散域中定义了大型拉普拉斯人,以表征数据的拓扑结构和形状。然后检查了组合拉普拉斯,大拉普拉斯和霍奇拉普拉斯的组合的相似性和差异。通过3D域的Eulerian表示,作为常规网格的级别函数,我们通过实验表明,大拉普拉斯特征值向霍奇·拉普拉斯(Hodge Laplacian)的基本形状收敛的条件。
As key subjects in spectral geometry and combinatorial graph theory respectively, the (continuous) Hodge Laplacian and the combinatorial Laplacian share similarities in revealing the topological dimension and geometric shape of data and in their realization of diffusion and minimization of harmonic measures. It is believed that they also both associate with vector calculus, through the gradient, curl, and divergence, as argued in the popular usage of "Hodge Laplacians on graphs" in the literature. Nevertheless, these Laplacians are intrinsically different in their domains of definitions and applicability to specific data formats, hindering any in-depth comparison of the two approaches. To facilitate the comparison and bridge the gap between the combinatorial Laplacian and Hodge Laplacian for the discretization of continuous manifolds with boundary, we further introduce Boundary-Induced Graph (BIG) Laplacians using tools from Discrete Exterior Calculus (DEC). BIG Laplacians are defined on discrete domains with appropriate boundary conditions to characterize the topology and shape of data. The similarities and differences of the combinatorial Laplacian, BIG Laplacian, and Hodge Laplacian are then examined. Through an Eulerian representation of 3D domains as level-set functions on regular grids, we show experimentally the conditions for the convergence of BIG Laplacian eigenvalues to those of the Hodge Laplacian for elementary shapes.