论文标题
基于地图的视觉惯性定位:一致性和复杂性
Map-based Visual-Inertial Localization: Consistency and Complexity
论文作者
论文摘要
无漂移的定位对于自动驾驶汽车至关重要。在本文中,我们通过提出一个基于过滤器的框架来解决该问题,该框架集成了预惯性的探光仪和预构建的地图中特征的测量值。在此框架中,进程框架和地图框架之间的转换被增强到状态并即时估算。此外,我们仅维护地图中的密钥帧位置,并采用Schmidt扩展了Kalman滤镜以部分更新状态,以便可以通过低计算成本来始终如一地考虑地图信息的不确定性。此外,我们从理论上证明,估计状态的不断变化的线性化点可以将虚假信息引入增强系统,并使原始的四维不可观察的子空间消失,从而导致实践中的估计不一致。为了缓解这个问题,我们采用了第一层雅各布式(FEJ)来维持增强系统的正确可观察性特性。此外,我们引入了一种可观察性约束的更新方法,以补偿基于地图的测量值长期缺席(可以是3分钟和1 km)后的明显累积误差。通过模拟,对我们提出的算法的一致估计得到了验证。通过现实世界实验,我们证明了我们提出的算法在四种数据集上成功运行,其计算成本较低(20%节省时间)和更好的估计精度(45%的轨迹误差降低)与基线算法融合相比,而Vins-Fusision与VINS-FUSION相比,VINS-FUSION FRIES FISE估算了三个数据的定位效果,因为估算了三个数据的效果。
Drift-free localization is essential for autonomous vehicles. In this paper, we address the problem by proposing a filter-based framework, which integrates the visual-inertial odometry and the measurements of the features in the pre-built map. In this framework, the transformation between the odometry frame and the map frame is augmented into the state and estimated on the fly. Besides, we maintain only the keyframe poses in the map and employ Schmidt extended Kalman filter to update the state partially, so that the uncertainty of the map information can be consistently considered with low computational cost. Moreover, we theoretically demonstrate that the ever-changing linearization points of the estimated state can introduce spurious information to the augmented system and make the original four-dimensional unobservable subspace vanish, leading to inconsistent estimation in practice. To relieve this problem, we employ first-estimate Jacobian (FEJ) to maintain the correct observability properties of the augmented system. Furthermore, we introduce an observability-constrained updating method to compensate for the significant accumulated error after the long-term absence (can be 3 minutes and 1 km) of map-based measurements. Through simulations, the consistent estimation of our proposed algorithm is validated. Through real-world experiments, we demonstrate that our proposed algorithm runs successfully on four kinds of datasets with the lower computational cost (20% time-saving) and the better estimation accuracy (45% trajectory error reduction) compared with the baseline algorithm VINS-Fusion, whereas VINS-Fusion fails to give bounded localization performance on three of four datasets because of its inconsistent estimation.