论文标题
AAU-NET:超声图像中乳房病变分割的自适应注意力U-NET
AAU-net: An Adaptive Attention U-net for Breast Lesions Segmentation in Ultrasound Images
论文作者
论文摘要
已经提出了各种深度学习方法,以从超声图像中分割乳房病变。但是,相似的强度分布,可变的肿瘤形态和模糊边界对乳腺病变分割面临挑战,尤其是对于具有不规则形状的恶性肿瘤。考虑到超声图像的复杂性,我们开发了自适应的u-net(AAU-net),以自动从超声图像自动稳定地分割乳房病变。具体而言,我们引入了一个混合自适应注意模块,该模块主要由通道自我发项障碍和空间自我发项障碍物组成,以取代传统的卷积操作。与常规卷积操作相比,混合自适应注意模块的设计可以帮助我们在不同的接受场下捕获更多功能。与现有的注意机制不同,混合自适应注意模块可以指导网络在通道和空间维度中选择更健壮的表示形式,以应对更复杂的乳房病变分割。在三个公共乳房超声数据集上使用几种最先进的深度学习分割方法进行了广泛的实验表明,我们的方法在乳腺病变细分方面具有更好的性能。此外,鲁棒性分析和外部实验表明,我们提出的AAU-NET对乳腺病变的分割具有更好的概括性能。此外,混合自适应注意模块可以灵活地应用于现有的网络框架上。
Various deep learning methods have been proposed to segment breast lesion from ultrasound images. However, similar intensity distributions, variable tumor morphology and blurred boundaries present challenges for breast lesions segmentation, especially for malignant tumors with irregular shapes. Considering the complexity of ultrasound images, we develop an adaptive attention U-net (AAU-net) to segment breast lesions automatically and stably from ultrasound images. Specifically, we introduce a hybrid adaptive attention module, which mainly consists of a channel self-attention block and a spatial self-attention block, to replace the traditional convolution operation. Compared with the conventional convolution operation, the design of the hybrid adaptive attention module can help us capture more features under different receptive fields. Different from existing attention mechanisms, the hybrid adaptive attention module can guide the network to adaptively select more robust representation in channel and space dimensions to cope with more complex breast lesions segmentation. Extensive experiments with several state-of-the-art deep learning segmentation methods on three public breast ultrasound datasets show that our method has better performance on breast lesion segmentation. Furthermore, robustness analysis and external experiments demonstrate that our proposed AAU-net has better generalization performance on the segmentation of breast lesions. Moreover, the hybrid adaptive attention module can be flexibly applied to existing network frameworks.