论文标题

glasdi:参数物理信息,贪婪的潜在空间动态识别

gLaSDI: Parametric Physics-informed Greedy Latent Space Dynamics Identification

论文作者

He, Xiaolong, Choi, Youngsoo, Fries, William D., Belof, Jon, Chen, Jiun-Shyan

论文摘要

提出了一种参数自适应物理学的潜在空间动力学识别(GLASDI)方法,以实现高维非线性动力学系统的准确,高效且可靠的数据驱动的降低级建模。在提议的GLASDI框架中,自动编码器发现了高维数据的内在非线性潜在表示,而动力学识别(DI)模型捕获了局部潜在空间动力学。为自动编码器和本地DI模型采用了交互式训练算法,该算法可以识别简单的潜在空间动力学,并提高数据驱动的还原降序建模的准确性和效率。为了最大程度地提高和加速最佳模型性能参数空间的探索,引入了一种自适应贪婪的采样算法,该算法与物理知识的基于残留的误差指示器和随机订婚评估集成在一起,以搜索即时搜索最佳的训练样品。此外,为了利用本地DI模型捕获的局部潜在空间动力学,以使用参数空间中的最少数量的局部DI模型来提高建模精度,采用了K-Neartible最邻居凸插值方案。通过建模各种非线性动力学问题,包括汉堡方程,非线性热传导和径向对流,可以证明所提出框架的有效性。提出的自适应贪婪采样在准确性方面优于常规预定义的均匀抽样。与高保真模型相比,格拉斯迪以1%至5%的相对误差的速度达到17至2,658倍。

A parametric adaptive physics-informed greedy Latent Space Dynamics Identification (gLaSDI) method is proposed for accurate, efficient, and robust data-driven reduced-order modeling of high-dimensional nonlinear dynamical systems. In the proposed gLaSDI framework, an autoencoder discovers intrinsic nonlinear latent representations of high-dimensional data, while dynamics identification (DI) models capture local latent-space dynamics. An interactive training algorithm is adopted for the autoencoder and local DI models, which enables identification of simple latent-space dynamics and enhances accuracy and efficiency of data-driven reduced-order modeling. To maximize and accelerate the exploration of the parameter space for the optimal model performance, an adaptive greedy sampling algorithm integrated with a physics-informed residual-based error indicator and random-subset evaluation is introduced to search for the optimal training samples on the fly. Further, to exploit local latent-space dynamics captured by the local DI models for an improved modeling accuracy with a minimum number of local DI models in the parameter space, a k-nearest neighbor convex interpolation scheme is employed. The effectiveness of the proposed framework is demonstrated by modeling various nonlinear dynamical problems, including Burgers equations, nonlinear heat conduction, and radial advection. The proposed adaptive greedy sampling outperforms the conventional predefined uniform sampling in terms of accuracy. Compared with the high-fidelity models, gLaSDI achieves 17 to 2,658x speed-up with 1 to 5% relative errors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源