论文标题
Meta-AF:自适应过滤器的元学习
Meta-AF: Meta-Learning for Adaptive Filters
论文作者
论文摘要
自适应滤波算法在整个信号处理过程中普遍存在,并且对各种领域都有重大影响,包括音频处理,电信,生物医学传感,天体物理学和宇宙学,地震学等。自适应过滤器通常通过在线专门的迭代优化方法(例如最小值平方或递归最小二乘正方形)进行操作,并旨在处理未知或非组织环境中的信号。但是,这种算法可能会缓慢而艰苦的发展,需要域专业知识才能创建,并需要数学见解才能改进。在这项工作中,我们试图改进手工衍生的自适应过滤算法,并为在线学习,自适应信号处理算法或直接从数据中更新规则提供了一个全面的框架。为此,我们将自适应过滤器的开发构建为在深度学习的背景下作为元学习问题,并使用一种自我安排的形式来学习自适应过滤器的在线迭代更新规则。为了展示我们的方法,我们专注于音频应用,并系统地为五个规范的音频问题开发元学习的自适应过滤器,包括系统识别,声学回声取消,盲目的均衡,多通道消失纤维化和光束形成。我们将我们的方法与常见的基线和/或最近的最新方法进行了比较。我们表明,我们可以学习实时运行的高性能自适应过滤器,并且在大多数情况下,我们使用与我们的方法的单一通用配置都大大优于我们比较的每种方法。
Adaptive filtering algorithms are pervasive throughout signal processing and have had a material impact on a wide variety of domains including audio processing, telecommunications, biomedical sensing, astrophysics and cosmology, seismology, and many more. Adaptive filters typically operate via specialized online, iterative optimization methods such as least-mean squares or recursive least squares and aim to process signals in unknown or nonstationary environments. Such algorithms, however, can be slow and laborious to develop, require domain expertise to create, and necessitate mathematical insight for improvement. In this work, we seek to improve upon hand-derived adaptive filter algorithms and present a comprehensive framework for learning online, adaptive signal processing algorithms or update rules directly from data. To do so, we frame the development of adaptive filters as a meta-learning problem in the context of deep learning and use a form of self-supervision to learn online iterative update rules for adaptive filters. To demonstrate our approach, we focus on audio applications and systematically develop meta-learned adaptive filters for five canonical audio problems including system identification, acoustic echo cancellation, blind equalization, multi-channel dereverberation, and beamforming. We compare our approach against common baselines and/or recent state-of-the-art methods. We show we can learn high-performing adaptive filters that operate in real-time and, in most cases, significantly outperform each method we compare against -- all using a single general-purpose configuration of our approach.