论文标题
离散的连续平滑和映射
Discrete-Continuous Smoothing and Mapping
论文作者
论文摘要
我们描述了一种在机器人应用程序中常见的一类离散因子图中的最大后验(MAP)推理的通用方法。尽管有公开可用的工具为根据离散或连续的图形模型提供了灵活且易于使用的接口,以指定和求解推理问题,但目前尚无类似的一般工具,可以为混合离散连续问题提供相同的功能。我们旨在解决这个问题。特别是,我们提供了一个库DC-SAM,将根据因子图定义的推理问题扩展到了离散模型的设置。我们工作的关键贡献是一个新颖的解决方案,用于有效地回收离散推理问题的近似解决方案。我们方法的关键见解是,虽然对连续和离散状态空间的共同推断通常很难,但是许多通常遇到离散的连续问题自然可以分为“离散的部分”,并且可以轻松解决的“连续部分”。利用这种结构,我们以交替的方式优化离散和连续变量。因此,我们提出的工作可以直接表示离散图形模型的直接表示和近似推断。我们还提供了一种方法来近似离散变量和连续变量的估计值的不确定性。我们通过应用于不同机器人感知应用程序的应用程序来证明我们的方法的多功能性,包括稳健的姿势图优化以及基于对象的映射和本地化。
We describe a general approach for maximum a posteriori (MAP) inference in a class of discrete-continuous factor graphs commonly encountered in robotics applications. While there are openly available tools providing flexible and easy-to-use interfaces for specifying and solving inference problems formulated in terms of either discrete or continuous graphical models, at present, no similarly general tools exist enabling the same functionality for hybrid discrete-continuous problems. We aim to address this problem. In particular, we provide a library, DC-SAM, extending existing tools for inference problems defined in terms of factor graphs to the setting of discrete-continuous models. A key contribution of our work is a novel solver for efficiently recovering approximate solutions to discrete-continuous inference problems. The key insight to our approach is that while joint inference over continuous and discrete state spaces is often hard, many commonly encountered discrete-continuous problems can naturally be split into a "discrete part" and a "continuous part" that can individually be solved easily. Leveraging this structure, we optimize discrete and continuous variables in an alternating fashion. In consequence, our proposed work enables straightforward representation of and approximate inference in discrete-continuous graphical models. We also provide a method to approximate the uncertainty in estimates of both discrete and continuous variables. We demonstrate the versatility of our approach through its application to distinct robot perception applications, including robust pose graph optimization, and object-based mapping and localization.