论文标题

零射击logit调整

Zero-Shot Logit Adjustment

论文作者

Chen, Dubing, Shen, Yuming, Zhang, Haofeng, Torr, Philip H. S.

论文摘要

基于语义描述符的广义零拍学习(GZSL)在识别测试阶段的新课程时提出了挑战。生成模型的开发使当前的GZSL技术能够进一步探究语义 - 视觉链接,并以包括生成器和分类器在内的两阶段形式达到顶点。但是,现有的基于一代的方法着重于增强发电机的效果,同时忽略了分类器的改进。在本文中,我们首先分析了生成的伪看不见的样本的两种特性:偏见和同质性。然后,我们执行各种贝叶斯推断以反向评估指标,这反映了可见和看不见的类别的平衡。由于我们的推导,上述两个特性通过logit调整纳入了分类器训练中,作为观察的先验。零摄影的logit调整进一步使基于语义的分类器在基于一代的GZSL中生效。我们的实验表明,与基本发电机结合使用时,提出的技术可以实现最先进的功能,并且可以改善各种生成的零击学习框架。我们的代码可在https://github.com/cdb342/ijcai-2022-zla上找到。

Semantic-descriptor-based Generalized Zero-Shot Learning (GZSL) poses challenges in recognizing novel classes in the test phase. The development of generative models enables current GZSL techniques to probe further into the semantic-visual link, culminating in a two-stage form that includes a generator and a classifier. However, existing generation-based methods focus on enhancing the generator's effect while neglecting the improvement of the classifier. In this paper, we first analyze of two properties of the generated pseudo unseen samples: bias and homogeneity. Then, we perform variational Bayesian inference to back-derive the evaluation metrics, which reflects the balance of the seen and unseen classes. As a consequence of our derivation, the aforementioned two properties are incorporated into the classifier training as seen-unseen priors via logit adjustment. The Zero-Shot Logit Adjustment further puts semantic-based classifiers into effect in generation-based GZSL. Our experiments demonstrate that the proposed technique achieves state-of-the-art when combined with the basic generator, and it can improve various generative Zero-Shot Learning frameworks. Our codes are available on https://github.com/cdb342/IJCAI-2022-ZLA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源