论文标题
使用变异自动编码器的相干光学通信中的盲目均衡和通道估计
Blind Equalization and Channel Estimation in Coherent Optical Communications Using Variational Autoencoders
论文作者
论文摘要
我们根据光学通信中载体回收的变异推断研究了自适应盲人均衡器的潜力。这些均衡器基于最大似然通道估计的低复杂性近似。我们将各种自动编码器(VAE)均衡器的概念概括为具有概率星座塑造(PC)的高阶调制格式,无处不在,在光学通信中,对接收器进行过度采样和双极性传播。除了基于卷积神经网络的黑盒均衡器外,我们还基于线性蝴蝶滤波器提出了一个基于模型的均衡器,并使用变异推理范式训练过滤器系数。作为副产品,VAE还提供了可靠的通道估计。我们在具有符号间干扰(ISI)的经典添加剂白色高斯噪声(AWGN)通道以及分散线性光学双极化通道上分析了VAE的性能和灵活性。我们表明,对于固定的固定通道但也随时间变化的通道,它可以超越最先进的恒定模数算法(CMA)来扩展盲人自适应均衡器的应用范围。评估伴随着超参数分析。
We investigate the potential of adaptive blind equalizers based on variational inference for carrier recovery in optical communications. These equalizers are based on a low-complexity approximation of maximum likelihood channel estimation. We generalize the concept of variational autoencoder (VAE) equalizers to higher order modulation formats encompassing probabilistic constellation shaping (PCS), ubiquitous in optical communications, oversampling at the receiver, and dual-polarization transmission. Besides black-box equalizers based on convolutional neural networks, we propose a model-based equalizer based on a linear butterfly filter and train the filter coefficients using the variational inference paradigm. As a byproduct, the VAE also provides a reliable channel estimation. We analyze the VAE in terms of performance and flexibility over a classical additive white Gaussian noise (AWGN) channel with inter-symbol interference (ISI) and over a dispersive linear optical dual-polarization channel. We show that it can extend the application range of blind adaptive equalizers by outperforming the state-of-the-art constant-modulus algorithm (CMA) for PCS for both fixed but also time-varying channels. The evaluation is accompanied with a hyperparameter analysis.