论文标题
广告分配的深钢筋学习中的混合转移
Hybrid Transfer in Deep Reinforcement Learning for Ads Allocation
论文作者
论文摘要
广告分配涉及将广告和有机项目分配给有限的饲料插槽,以最大化平台收入,已成为研究热点。请注意,电子商务平台通常有多个针对不同类别的入口,并且某些入口几乎没有访问。这些入口的数据覆盖范围较低,这使得代理很难学习。为了应对这一挑战,我们提出了基于相似性的ADS分配(SHTAA)的混合转移,该转移有效地将样本和知识从数据富裕的入口转移到数据贫乏的入口。具体而言,我们为MDP定义了不确定性感知的相似性,以估计不同入口的MDP相似性。基于这种相似性,我们设计了一种混合转移方法,包括实例传输和策略传输,以有效地将样本和知识从一个入口转移到另一个入口。 Meituan食品交付平台上的离线和在线实验都表明,该提出的方法可以在数据贫困的入口方面取得更好的性能并增加平台的收入。
Ads allocation, which involves allocating ads and organic items to limited slots in feed with the purpose of maximizing platform revenue, has become a research hotspot. Notice that, e-commerce platforms usually have multiple entrances for different categories and some entrances have few visits. Data from these entrances has low coverage, which makes it difficult for the agent to learn. To address this challenge, we propose Similarity-based Hybrid Transfer for Ads Allocation (SHTAA), which effectively transfers samples as well as knowledge from data-rich entrance to data-poor entrance. Specifically, we define an uncertainty-aware similarity for MDP to estimate the similarity of MDP for different entrances. Based on this similarity, we design a hybrid transfer method, including instance transfer and strategy transfer, to efficiently transfer samples and knowledge from one entrance to another. Both offline and online experiments on Meituan food delivery platform demonstrate that the proposed method could achieve better performance for data-poor entrance and increase the revenue for the platform.