论文标题
通过硬件/软件合作,启用高性能和节能混合/分析数据库
Enabling High-Performance and Energy-Efficient Hybrid Transactional/Analytical Databases with Hardware/Software Cooperation
论文作者
论文摘要
数据量的增长,加上对实时分析的需求不断增长(使用最新数据),导致了同时支持交易和数据分析的数据库系统的出现。这些混合交易和分析处理(HTAP)数据库系统可以支持实时数据分析,而不会在单独的单用途数据库中同步的高成本。不幸的是,对于许多执行高数据更新速率的应用,与仅执行交易或仅在隔离中仅执行交易性或仅进行分析性的数据相比,(1)从CPU和记忆逐步进行跨性别的数据,(2)数据更新(2)数据的数据移动(2)数据,(2)数据更新(2)数据的数据移动(2)数据,(2)数据更新(2)(2)数据的数据移动(2)数据,(2)数据更新(2)(2)数据数据,(2)数据更新(2)数据数据),则最新的HTAP系统造成了交易(最高74.6%)和/或分析(高达49.8%)吞吐量的最先进的HTAP系统损失(高达49.8%)的吞吐量。在整个系统中保持一致的数据视图。 我们提出了Polynesia,这是一种用于内存HTAP数据库的硬件软件共同设计的系统,避免了传统HTAP系统的巨大吞吐量损失。波利尼西亚(1)将HTAP系统分为交易和分析处理岛,(2)实现新的自定义硬件,以解锁软件优化以降低更新传播和一致性的成本,并且(3)利用在分析岛上的内存过程中的处理,以减轻数据移动数据移动的数据移动。我们的评估表明,波利尼西亚的表现优于三个最先进的HTAP系统,平均交易/分析吞吐量提高了1.7倍/3.7倍,而在先前的最低能量HTAP系统中,能源消耗量降低了48%。
A growth in data volume, combined with increasing demand for real-time analysis (using the most recent data), has resulted in the emergence of database systems that concurrently support transactions and data analytics. These hybrid transactional and analytical processing (HTAP) database systems can support real-time data analysis without the high costs of synchronizing across separate single-purpose databases. Unfortunately, for many applications that perform a high rate of data updates, state-of-the-art HTAP systems incur significant losses in transactional (up to 74.6%) and/or analytical (up to 49.8%) throughput compared to performing only transactional or only analytical queries in isolation, due to (1) data movement between the CPU and memory, (2) data update propagation from transactional to analytical workloads, and (3) the cost to maintain a consistent view of data across the system. We propose Polynesia, a hardware-software co-designed system for in-memory HTAP databases that avoids the large throughput losses of traditional HTAP systems. Polynesia (1) divides the HTAP system into transactional and analytical processing islands, (2) implements new custom hardware that unlocks software optimizations to reduce the costs of update propagation and consistency, and (3) exploits processing-in-memory for the analytical islands to alleviate data movement overheads. Our evaluation shows that Polynesia outperforms three state-of-the-art HTAP systems, with average transactional/analytical throughput improvements of 1.7x/3.7x, and reduces energy consumption by 48% over the prior lowest-energy HTAP system.