论文标题
通过渐进式学习的一声域自适应模仿学习
One-Shot Domain-Adaptive Imitation Learning via Progressive Learning
论文作者
论文摘要
传统的基于深度学习的视觉模仿学习技术需要大量的模型培训演示数据,并且预训练的模型很难适应新的情况。为了解决这些局限性,我们使用一种由三个阶段组成的新型渐进学习方法提出了一个统一的框架:i)概念表示的粗糙学习阶段,ii)动作产生的精细学习阶段,ii)一个虚构的学习阶段,用于域适应。总体而言,这种方法导致一个单发域自适应模仿学习框架。我们以机器人倾泻任务为例来评估其有效性。我们的结果表明,该方法比当代端到端模仿学习方法具有多个优势,包括提高任务执行的成功率和更有效的深入模仿学习培训。此外,对新领域的推广性得到了改善,如这里新颖的背景,目标容器和颗粒组合所证明的那样。我们认为,所提出的方法可以广泛地适用于涉及对机器人操作的深层模仿学习的不同工业或国内应用,在该目标方案中具有较高的多样性,而人类示范数据受到限制。
Traditional deep learning-based visual imitation learning techniques require a large amount of demonstration data for model training, and the pre-trained models are difficult to adapt to new scenarios. To address these limitations, we propose a unified framework using a novel progressive learning approach comprised of three phases: i) a coarse learning phase for concept representation, ii) a fine learning phase for action generation, and iii) an imaginary learning phase for domain adaptation. Overall, this approach leads to a one-shot domain-adaptive imitation learning framework. We use robotic pouring task as an example to evaluate its effectiveness. Our results show that the method has several advantages over contemporary end-to-end imitation learning approaches, including an improved success rate for task execution and more efficient training for deep imitation learning. In addition, the generalizability to new domains is improved, as demonstrated here with novel background, target container and granule combinations. We believe that the proposed method can be broadly applicable to different industrial or domestic applications that involve deep imitation learning for robotic manipulation, where the target scenarios have high diversity while the human demonstration data is limited.