论文标题

多传感器次优融合学生的$ T $过滤器

Multi-sensor Suboptimal Fusion Student's $t$ Filter

论文作者

Li, Tiancheng, Hu, Zheng, Liu, Zhunga, Wang, Xiaoxu

论文摘要

在存在重型过程和测量噪声的情况下,提出了一个多传感器融合学生的$ t $滤波器,用于时间序列递归估算。该方法是由信息理论优化驱动的,基于次优算术平均值(AA)融合方法扩展了单个传感器学生的$ t $ t $ kalman滤波器。为了确保计算高效的封闭形式$ t $密度递归,在局部传感器过滤和传感器间融合计算中都使用了合理的近似。总体框架适合任何面向高斯的融合方法,例如协方差交叉点(CI)。模拟证明了与经典的高斯估计器相比,提出的基于AA融合的$ t $滤波器在处理异常值方面的有效性,与CI方法和增强测量融合相比,AA融合的优势是AA融合的优势。

A multi-sensor fusion Student's $t$ filter is proposed for time-series recursive estimation in the presence of heavy-tailed process and measurement noises. Driven from an information-theoretic optimization, the approach extends the single sensor Student's $t$ Kalman filter based on the suboptimal arithmetic average (AA) fusion approach. To ensure computationally efficient, closed-form $t$ density recursion, reasonable approximation has been used in both local-sensor filtering and inter-sensor fusion calculation. The overall framework accommodates any Gaussian-oriented fusion approach such as the covariance intersection (CI). Simulation demonstrates the effectiveness of the proposed multi-sensor AA fusion-based $t$ filter in dealing with outliers as compared with the classic Gaussian estimator, and the advantage of the AA fusion in comparison with the CI approach and the augmented measurement fusion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源