论文标题

具有梯度偏好对异常检测的判别特征学习框架

Discriminative Feature Learning Framework with Gradient Preference for Anomaly Detection

论文作者

Xu, Muhao, Zhou, Xueying, Gao, Xizhan, He, WeiKai, Niu, Sijie

论文摘要

无监督的表示学习已广泛用于异常检测中,实现了令人印象深刻的性能。提取可以显着提高异常检测性能的有价值的特征向量对于无监督的表示学习至关重要。为此,我们提出了一个新型的歧视性特征学习框架,具有梯度偏好对异常检测。具体而言,我们首先设计了基于梯度偏好的选择器,以在空间中存储强大的特征点,然后构建一个功能存储库,从而减轻冗余特征向量的干扰并提高推理效率。为了克服特征向量的松弛性,其次,我们提出了一个歧视性特征学习,并用中心约束以将特征存储库映射到紧凑的子空间,以便异常样本与正常样本更具区分。此外,我们的方法很容易扩展到异常定位。关于流行的工业和医学异常检测数据集的广泛实验表明,我们提出的框架可以在异常检测和定位方面取得竞争成果。更重要的是,我们的方法在几乎没有拍摄异常检测中优于最先进的方法。

Unsupervised representation learning has been extensively employed in anomaly detection, achieving impressive performance. Extracting valuable feature vectors that can remarkably improve the performance of anomaly detection are essential in unsupervised representation learning. To this end, we propose a novel discriminative feature learning framework with gradient preference for anomaly detection. Specifically, we firstly design a gradient preference based selector to store powerful feature points in space and then construct a feature repository, which alleviate the interference of redundant feature vectors and improve inference efficiency. To overcome the looseness of feature vectors, secondly, we present a discriminative feature learning with center constrain to map the feature repository to a compact subspace, so that the anomalous samples are more distinguishable from the normal ones. Moreover, our method can be easily extended to anomaly localization. Extensive experiments on popular industrial and medical anomaly detection datasets demonstrate our proposed framework can achieve competitive results in both anomaly detection and localization. More important, our method outperforms the state-of-the-art in few shot anomaly detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源