论文标题

带有频率注意知情图卷积网络的脑瘫预测

Cerebral Palsy Prediction with Frequency Attention Informed Graph Convolutional Networks

论文作者

Zhang, Haozheng, Shum, Hubert P. H., Ho, Edmond S. L.

论文摘要

早期诊断和干预在临床上被认为是治疗脑瘫(CP)的最重要部分,因此为CP设计有效且可解释的自动预测系统至关重要。我们强调了CP婴儿的人类运动频率与健康群体的频率之间存在显着差异,从而改善了预测表现。但是,现有的基于深度学习的方法并未将婴儿移动的频率信息用于CP预测。本文提出了一个频率关注的图形卷积网络,并在两个消费者级RGB视频数据集(即Mini-RGBD和RVI-38数据集)上验证了它。我们提出的频率注意模块有助于改善分类性能和系统可解释性。此外,我们设计了一种频率固定方法,该方法在过滤噪声时保留了人类关节位置数据的临界频率。我们的预测性能在两个数据集上都达到了最先进的研究。我们的工作证明了频率信息在支持CP的非侵入性预测方面的有效性,并提供了一种支持在临床资源不丰富的资源有限区域中CP早期诊断的方法。

Early diagnosis and intervention are clinically considered the paramount part of treating cerebral palsy (CP), so it is essential to design an efficient and interpretable automatic prediction system for CP. We highlight a significant difference between CP infants' frequency of human movement and that of the healthy group, which improves prediction performance. However, the existing deep learning-based methods did not use the frequency information of infants' movement for CP prediction. This paper proposes a frequency attention informed graph convolutional network and validates it on two consumer-grade RGB video datasets, namely MINI-RGBD and RVI-38 datasets. Our proposed frequency attention module aids in improving both classification performance and system interpretability. In addition, we design a frequency-binning method that retains the critical frequency of the human joint position data while filtering the noise. Our prediction performance achieves state-of-the-art research on both datasets. Our work demonstrates the effectiveness of frequency information in supporting the prediction of CP non-intrusively and provides a way for supporting the early diagnosis of CP in the resource-limited regions where the clinical resources are not abundant.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源