论文标题
稳定性分析可遍布的虫洞周围的圆形轨道,并具有无质量耦合标量场
Stability analysis of circular orbits around a traversable wormhole with massless conformally coupled scalar field
论文作者
论文摘要
我们研究了作为Einstein磁场方程的解决方案获得的可遍布虫洞(TWH)时空的背景中圆形轨道的稳定性,并与无质量的标量场相连。采用Lyapunov稳定性方法来确定TWH时空周围非旋转测试颗粒的圆形轨道(时机和空)的稳定性。在定时的测量学的情况下,粒子被限制在四种不同类型的有效电势中移动,具体取决于具有离心机和重力部分的角动量L的各种值。无效测量学的有效潜力仅由一个离心部件组成。此外,我们根据其Lyapunov稳定性表征每个固定点,从而将固定点的圆形轨道分类为稳定的中心和不稳定的鞍点,并通过描绘相应的相位孔形成。
We study the stability of circular orbits in the background of a traversable wormhole (TWH) spacetime obtained as a solution of Einstein's field equations coupled conformally to a massless scalar field. The Lyapunov stability approach is employed to determine the stability of circular orbits (timelike and null) of non-spinning test particles around a TWH spacetime. In the case of timelike geodesics, the particle is confined to move in four different types of effective potentials depending on various values of the angular momentum L with both centrifugal and gravitational part. The effective potential for null geodesics consists of only a centrifugal part. Further, we characterize each fixed point according to its Lyapunov stability, and thus classify the circular orbits at the fixed point into stable center and unstable saddle points by depicting the corresponding phase-portraits.