论文标题

反对对称谐波振荡器及其与倒谐波振荡器的关系

Anti-PT-symmetric harmonic oscillator and its relation to the inverted harmonic oscillator

论文作者

Amaouche, Nadjat, Bouguerche, Ishak, Zerimeche, Rahma, Maamache, Mustapha

论文摘要

我们处理谐波振荡器的量子动力学及其在Schrödinger图片中的倒置。通常,在文献的大多数论文中,倒的谐波振荡器是通过将ω替换为IΩ从谐波振荡器正式获得的,这会导致无限的特征向量。这明确表明,重新定义谐波振荡器反转中的变量有一些不清楚的点。为了解决这种情况,我们通过将倒谐波振荡器连接到反对称谐波振荡器来引入缩放运算符(Dyson变换),我们获得了标准的准平性关系,以确保特征功能正常的时间不变性。我们为本本特问题提供了完整的描述。我们表明,该系统的波形是从伪量表产物的意义上标准化的。使用梯子操作员方法研究了倒振荡器的高斯波包。发现此波数据包与广义相干状态有关,该状态可用于研究空间和动量运算符的平均值。我们发现这些平均值可再现经典运动。

We treat the quantum dynamics of a harmonic oscillator as well as its inverted counterpart in the Schrödinger picture. Generally in the most papers of the literature, the inverted harmonic oscillator is formally obtained from the harmonic oscillator by the replacement of ω to iω, this leads to unbounded eigenvectors. This explicitly demonstrates that there are some unclear points involved in redefining the variables in the harmonic oscillator inversion. To remedy this situation, we introduce a scaling operator (Dyson transformation) by connecting the inverted harmonic oscillator to an anti-PT-symmetric harmonic oscillator, we obtain the standard quasi-Hermiticity relation which would ensure the time invariance of the eigenfunction's norm. We give a complete description for the eigenproblem. We show that the wavefunctions for this system are normalized in the sense of the pseudo-scalar product. A Gaussian wave packet of the inverted oscillator is investigated by using the ladder operators method. This wave packet is found to be associated with the generalized coherent state that can be crucially utilized for investigating the mean values of the space and momentum operators. We find that these mean values reproduce the classical motion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源