论文标题
量子rényi熵功能的玻感高斯系统
Quantum Rényi Entropy Functionals for Bosonic Gaussian Systems
论文作者
论文摘要
在这项研究中,将量子的熵熵功率不平等$ p> 1 $和功率$κ$引入,作为经典的rényii-$ p $熵功率不平等的量子类似物。为了得出这种不平等,我们首先利用了Wehrl- $ p $熵功率不平等,通过量子卷积的混合操作,这是一种广义的梁拼式操作,这是bosonic高斯系统上的。该观察结果直接提供了与$ d $ - 摩德玻色旋式高斯政权的准概率分布相对于准概率分布的量子。预计所提出的不平等将对量子通道容量的非平凡计算,尤其是玻色峰高斯量子通道上的普遍上限,以及通过挤压操作在高斯放大器的情况下是高斯纠缠见证人。
In this study, the quantum Rényi entropy power inequality of order $p>1$ and power $κ$ is introduced as a quantum analog of the classical Rényi-$p$ entropy power inequality. To derive this inequality, we first exploit the Wehrl-$p$ entropy power inequality on bosonic Gaussian systems via the mixing operation of quantum convolution, which is a generalized beam-splitter operation. This observation directly provides a quantum Rényi-$p$ entropy power inequality over a quasi-probability distribution for $D$-mode bosonic Gaussian regimes. The proposed inequality is expected to be useful for the nontrivial computing of quantum channel capacities, particularly universal upper bounds on bosonic Gaussian quantum channels, and a Gaussian entanglement witness in the case of Gaussian amplifier via squeezing operations.