论文标题
属2 goeritz等价$ s^3 $
Genus 2 Goeritz Equivalence in $S^3$
论文作者
论文摘要
3个manifold的属$ g $ heegaard属的Goeritz小组是一组歧管的定向性自动形态的同位素类别,可保留Heegaard分裂。在标准属2的背景下,$ s^3 $的Heegaard拆分,我们介绍了曲线等效的概念,这是两个代数障碍物,与goeritz等效的简单封闭曲线相当,这些曲线是简单地计算的,并提供了示例家族的示例家族,证明了这些障碍的使用方式。
The Goeritz group of a genus $g$ Heegaard splitting of a 3-manifold is the group of isotopy classes of orientation-preserving automorphisms of the manifold that preserve the Heegaard splitting. In the context of the standard genus 2 Heegaard splitting of $S^3$, we introduce the concept of Goeritz equivalence of curves, present two algebraic obstructions to Goeritz equivalence of simple closed curves that are straightforward to compute, and provide families of examples demonstrating how these obstructions may be used.