论文标题

量子半监督的内核学习

Quantum Semi-Supervised Kernel Learning

论文作者

Saeedi, Seyran, Panahi, Aliakbar, Arodz, Tom

论文摘要

量子计算利用量子效应来构建比其经典变体更快的算法。在机器学习中,对于给定的模型架构,训练速度通常取决于训练数据集的大小。因此,量子机学习方法有可能使用极大的数据集促进学习。虽然培训机器学习模型的数据可用性正在稳步增长,但通常会更容易收集以获取相应标签的特征向量。解决此问题的方法之一是使用半监督的学习,不仅利用标记的样本,还利用未标记的特征向量。在这里,我们提出了一种用于培训半监督内核支持向量机的量子机学习算法。该算法使用基于量子样本的汉密尔顿模拟的最新进展来扩展现有的量子LS-SVM算法,以处理损失中的半监督项。通过对算法的计算复杂性的理论研究,我们表明它的速度与完全监督的量子LS-SVM相同。

Quantum computing leverages quantum effects to build algorithms that are faster then their classical variants. In machine learning, for a given model architecture, the speed of training the model is typically determined by the size of the training dataset. Thus, quantum machine learning methods have the potential to facilitate learning using extremely large datasets. While the availability of data for training machine learning models is steadily increasing, oftentimes it is much easier to collect feature vectors that to obtain the corresponding labels. One of the approaches for addressing this issue is to use semi-supervised learning, which leverages not only the labeled samples, but also unlabeled feature vectors. Here, we present a quantum machine learning algorithm for training Semi-Supervised Kernel Support Vector Machines. The algorithm uses recent advances in quantum sample-based Hamiltonian simulation to extend the existing Quantum LS-SVM algorithm to handle the semi-supervised term in the loss. Through a theoretical study of the algorithm's computational complexity, we show that it maintains the same speedup as the fully-supervised Quantum LS-SVM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源