论文标题
强大的贝叶斯偏见调整后的随机效应模型,以考虑证据合成中偏见术语的不确定性
A robust Bayesian bias-adjusted random effects model for consideration of uncertainty about bias terms in evidence synthesis
论文作者
论文摘要
荟萃分析是一种用于合成的统计方法,用于合成具有相同目标端点的研究,旨在使用固定和随机效应模型或网络模型来得出合并的定量估计值。纳入研究之间的差异取决于目标人群的变化(即异质性)和由于研究设计和执行而引起的研究质量的变化(即偏见)。通常使用批判性评估对偏见的风险进行定性评估,并且可以使用定量偏见分析来评估偏见对兴趣量的影响。我们提出了一种方法,可以通过表征不精确的偏见(作为概率的范围)来量化偏见分析中如何量化偏差术语并使用强大的贝叶斯分析来估计整体效果,从而考虑一种方法。强大的贝叶斯分析在这里被视为在一组连贯的概率分布上执行的贝叶斯更新,该集合从一组偏差术语中出现。我们展示了如何根据对Cochrane偏见表风险的一个或几个域中的偏见相对大小(即低,不明确和高风险)的相对大小(即低,不明确和高风险)指定的偏差术语。为了进行说明,我们将强大的贝叶斯偏见调整后的随机效应模型应用于已经发表的荟萃分析对利妥昔单抗对系统评论的Cochrane数据库中rituximab对类风湿关节炎的影响的影响。
Meta-analysis is a statistical method used in evidence synthesis for combining, analyzing and summarizing studies that have the same target endpoint and aims to derive a pooled quantitative estimate using fixed and random effects models or network models. Differences among included studies depend on variations in target populations (i.e. heterogeneity) and variations in study quality due to study design and execution (i.e. bias). The risk of bias is usually assessed qualitatively using critical appraisal, and quantitative bias analysis can be used to evaluate the influence of bias on the quantity of interest. We propose a way to consider ignorance or ambiguity in how to quantify bias terms in a bias analysis by characterizing bias with imprecision (as bounds on probability) and use robust Bayesian analysis to estimate the overall effect. Robust Bayesian analysis is here seen as Bayesian updating performed over a set of coherent probability distributions, where the set emerges from a set of bias terms. We show how the set of bias terms can be specified based on judgments on the relative magnitude of biases (i.e., low, unclear and high risk of bias) in one or several domains of the Cochrane's risk of bias table. For illustration, we apply a robust Bayesian bias-adjusted random effects model to an already published meta-analysis on the effect of Rituximab for rheumatoid arthritis from the Cochrane Database of Systematic Reviews.