论文标题
联邦学习在构建强大的Covid-19胸部X射线分类模型中的应用
Application of Federated Learning in Building a Robust COVID-19 Chest X-ray Classification Model
论文作者
论文摘要
在开发人工智能(AI)基于基于人工智能的算法以解决问题时,数据量起关键作用 - 大量数据有助于研究人员和工程师开发可靠的AI算法。在建立与医学成像有关的问题的基于AI的模型的情况下,需要将这些数据从医疗机构转移到开发算法的组织中。数据运动涉及耗时的手续,例如遵守HIPAA,GDPR等。也有可能患者的私人数据泄漏,从而损害了他们的机密性。解决这些问题的一种解决方案是使用联合学习框架。 联合学习(FL)通过使用具有不同分布和数据特征的不同源的数据而无需将所有数据移动到中央服务器的不同来源,可以帮助AI模型更好地推广并创建强大的AI模型。在我们的论文中,我们将FL框架应用于训练深度学习模型,以解决预测COVID-19的存在或不存在的二元分类问题。我们在每个来源上采用了三种不同的数据来源,并培训了单个模型。然后,我们在完整数据上训练了FL模型,并比较了所有模型性能。我们证明了FL模型的性能要比单个模型更好。此外,FL模型与在中央服务器上合并的所有数据训练的模型相同执行。因此,联合学习会导致通用的AI模型,而没有数据传输和监管开销的成本。
While developing artificial intelligence (AI)-based algorithms to solve problems, the amount of data plays a pivotal role - large amount of data helps the researchers and engineers to develop robust AI algorithms. In the case of building AI-based models for problems related to medical imaging, these data need to be transferred from the medical institutions where they were acquired to the organizations developing the algorithms. This movement of data involves time-consuming formalities like complying with HIPAA, GDPR, etc.There is also a risk of patients' private data getting leaked, compromising their confidentiality. One solution to these problems is using the Federated Learning framework. Federated Learning (FL) helps AI models to generalize better and create a robust AI model by using data from different sources having different distributions and data characteristics without moving all the data to a central server. In our paper, we apply the FL framework for training a deep learning model to solve a binary classification problem of predicting the presence or absence of COVID-19. We took three different sources of data and trained individual models on each source. Then we trained an FL model on the complete data and compared all the model performances. We demonstrated that the FL model performs better than the individual models. Moreover, the FL model performed at par with the model trained on all the data combined at a central server. Thus Federated Learning leads to generalized AI models without the cost of data transfer and regulatory overhead.