论文标题
统计$ p $ - 晶格 - 字母riesz空间
Statistical $p$-convergence in lattice-normed Riesz spaces
论文作者
论文摘要
如果存在统计$ p $ p $ p $ p $ p $ - decreasing序列$ q \ stpd 0 $,则具有统计$ p $ - conve $ q \ stpd 0 $ a index $ q $ k $ k $ k $ k $ q_ {n_k} $ in K $中的每个$ n_k \ \。最近已经以$(x,p,e)=(e,| \ cdot |,e)$对这种融合进行了调查,以统计订单的名称和统计多重订单融合的名称,也以$ e $为本地固体的Riesz空间,以统计上无基的$ -Conconvergence $ -Conconvergence and statisiss corverence和统计的corverence。在本文中,我们研究了统计$ p $ - convergence的一般特性。
A sequence $(x_n)$ in a lattice-normed space $(X,p,E)$ is statistical $p$-convergent to $x\in X$ if there exists a statistical $p$-decreasing sequence $q\stpd 0$ with an index set $K$ such that $δ(K)=1$ and $p(x_{n_k}-x)\leq q_{n_k}$ for every $n_k\in K$. This convergence has been investigated recently for $(X,p,E)=(E,|\cdot|,E)$ under the name of statistical order convergence and under the name of statistical multiplicative order convergence, and also, for taking $E$ as a locally solid Riesz space under the names statistically unbounded $τ$-convergence and statistically multiplicative convergence. In this paper, we study the general properties of statistical $p$-convergence.