论文标题

学习动态视图合成,很少有RGBD摄像机

Learning Dynamic View Synthesis With Few RGBD Cameras

论文作者

Wang, Shengze, Kwon, YoungJoong, Shen, Yuan, Zhang, Qian, State, Andrei, Huang, Jia-Bin, Fuchs, Henry

论文摘要

近年来,动态新型观点合成方面取得了重大进步。但是,当前的深度学习模型通常需要(1)先前的模型(例如,SMPL人类模型),(2)大量预处理,或(3)每场景优化。我们建议利用RGBD摄像机去除这些限制,并合成动态室内场景的免费视频视频。我们从RGBD帧中生成特征点云,然后通过神经渲染器将它们渲染到免费视频视频中。但是,不准确,不稳定和不完整的深度测量会引起严重的扭曲,闪烁和鬼影。我们通过提出的循环重建一致性和时间稳定模块来实施时空的一致性,以减少这些伪影。我们介绍了一个简单的区域深度侵蚀模块,该模块可适应地涂有深度值,从而呈现完整的新视图。此外,我们提出了人类交互数据集,以验证我们的方法并促进未来的研究。该数据集由43个多视图RGBD视频序列组成,这些视频序列的日常活动序列,捕获了人类受试者及其周围环境之间的复杂相互作用。 HTI数据集上的实验表明,我们的方法的表现优于基线图像保真度和时空一致性。我们将很快发布我们的代码以及网站上的数据集。

There have been significant advancements in dynamic novel view synthesis in recent years. However, current deep learning models often require (1) prior models (e.g., SMPL human models), (2) heavy pre-processing, or (3) per-scene optimization. We propose to utilize RGBD cameras to remove these limitations and synthesize free-viewpoint videos of dynamic indoor scenes. We generate feature point clouds from RGBD frames and then render them into free-viewpoint videos via a neural renderer. However, the inaccurate, unstable, and incomplete depth measurements induce severe distortions, flickering, and ghosting artifacts. We enforce spatial-temporal consistency via the proposed Cycle Reconstruction Consistency and Temporal Stabilization module to reduce these artifacts. We introduce a simple Regional Depth-Inpainting module that adaptively inpaints missing depth values to render complete novel views. Additionally, we present a Human-Things Interactions dataset to validate our approach and facilitate future research. The dataset consists of 43 multi-view RGBD video sequences of everyday activities, capturing complex interactions between human subjects and their surroundings. Experiments on the HTI dataset show that our method outperforms the baseline per-frame image fidelity and spatial-temporal consistency. We will release our code, and the dataset on the website soon.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源