论文标题

PubMed摘要中基因/蛋白质相互作用的全局映射:框架和p53相互作用的实验

Global Mapping of Gene/Protein Interactions in PubMed Abstracts: A Framework and an Experiment with P53 Interactions

论文作者

Li, Xin, Chen, Hsinchun, Huang, Zan, Su, Hua, Martinez, Jesse D.

论文摘要

基因/蛋白质相互作用为对细胞过程的透彻理解提供了关键信息。最近,大量的兴趣和努力集中在全基因组基因网络的构建和分析上。大量的生物医学文献是基因/蛋白质相互作用信息的重要来源。文本挖掘工具的最新进展使得可以从自由文本文献中自动提取这种记录的互动。在本文中,我们提出了一个综合框架,用于基于使用文本挖掘工具从生物医学文献存储库中提取的基因/蛋白质相互作用来构建和分析大规模基因功能网络。我们提出的框架包括对网络拓扑,网络拓扑 - 基因函数关系和时间网络演变的分析,以提炼嵌入了文献中基因功能相互作用中的有价值的信息。我们使用p53相关的PubMed摘要的测试床证明了所提出的框架的应用,该摘要表明,基于文献的p53网络表现出很小的世界和无尺度性能。我们还发现,基于文献的网络中的高度基因具有出现在手动策划的数据库中的很高可能性,并且在同一途径中的基因倾向于在我们的基于文献的网络中形成本地簇。时间分析表明,与许多其他基因相互作用的基因往往参与大量新发现的相互作用。

Gene/protein interactions provide critical information for a thorough understanding of cellular processes. Recently, considerable interest and effort has been focused on the construction and analysis of genome-wide gene networks. The large body of biomedical literature is an important source of gene/protein interaction information. Recent advances in text mining tools have made it possible to automatically extract such documented interactions from free-text literature. In this paper, we propose a comprehensive framework for constructing and analyzing large-scale gene functional networks based on the gene/protein interactions extracted from biomedical literature repositories using text mining tools. Our proposed framework consists of analyses of the network topology, network topology-gene function relationship, and temporal network evolution to distill valuable information embedded in the gene functional interactions in literature. We demonstrate the application of the proposed framework using a testbed of P53-related PubMed abstracts, which shows that literature-based P53 networks exhibit small-world and scale-free properties. We also found that high degree genes in the literature-based networks have a high probability of appearing in the manually curated database and genes in the same pathway tend to form local clusters in our literature-based networks. Temporal analysis showed that genes interacting with many other genes tend to be involved in a large number of newly discovered interactions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源