论文标题
部分可观测时空混沌系统的无模型预测
The Linear Span of Uniform Matrix Product States
论文作者
论文摘要
各种均匀基质产物状态既出现在代数几何形状中,作为Veronese品种的自然概括,又是量子多体物理学,作为放置在环上的位点的转换不变系统的模型。使用线性代数,表示理论和矩阵不变理论的方法,我们研究了该品种的线性跨度。
The variety of uniform matrix product states arises both in algebraic geometry as a natural generalization of the Veronese variety, and in quantum many-body physics as a model for a translation-invariant system of sites placed on a ring. Using methods from linear algebra, representation theory, and invariant theory of matrices, we study the linear span of this variety.