论文标题

部分可观测时空混沌系统的无模型预测

Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency

论文作者

Monnier, Tom, Fisher, Matthew, Efros, Alexei A., Aubry, Mathieu

论文摘要

单视图重建的方法通常依赖于观点注释,剪影,缺乏背景,同一实例的多个视图,模板形状或对称性。我们通过明确利用不同对象实例的图像之间的一致性来避免所有这些监督和假设。结果,我们的方法可以从描述相同对象类别的大量未标记图像中学习。我们的主要贡献是利用跨境一致性的两种方法:(i)逐步调理,一种培训策略,以课程学习方式逐渐将模型从类别逐步专业化为实例; (ii)邻居重建,具有相似形状或纹理的实例之间的损失。对于我们方法的成功也至关重要的是:我们的结构化自动编码体系结构将图像分解为显式形状,纹理,姿势和背景;差分渲染的适应性表述;和一个新的优化方案在3D和姿势学习之间交替。我们将我们的方法(独角兽)在多样化的合成体形数据集上进行比较 - 需要多种视图作为监督的方法的经典基准,以及标准的实数基准(Pascal3d+ Car,Cub,Cub,Cub),大多数方法都需要已知的模板和silhouette antotations。我们还向更具挑战性的现实世界集合(Compcars,LSUN)展示了适用性,该收藏品(Compcars,lsun),该收藏不可用,并且没有在物体周围裁剪图像。

Approaches for single-view reconstruction typically rely on viewpoint annotations, silhouettes, the absence of background, multiple views of the same instance, a template shape, or symmetry. We avoid all such supervision and assumptions by explicitly leveraging the consistency between images of different object instances. As a result, our method can learn from large collections of unlabelled images depicting the same object category. Our main contributions are two ways for leveraging cross-instance consistency: (i) progressive conditioning, a training strategy to gradually specialize the model from category to instances in a curriculum learning fashion; and (ii) neighbor reconstruction, a loss enforcing consistency between instances having similar shape or texture. Also critical to the success of our method are: our structured autoencoding architecture decomposing an image into explicit shape, texture, pose, and background; an adapted formulation of differential rendering; and a new optimization scheme alternating between 3D and pose learning. We compare our approach, UNICORN, both on the diverse synthetic ShapeNet dataset - the classical benchmark for methods requiring multiple views as supervision - and on standard real-image benchmarks (Pascal3D+ Car, CUB) for which most methods require known templates and silhouette annotations. We also showcase applicability to more challenging real-world collections (CompCars, LSUN), where silhouettes are not available and images are not cropped around the object.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源