论文标题
各向异性多翼半金属中的隧道相图
Tunneling phase diagrams in anisotropic Multi-Weyl semimetals
论文作者
论文摘要
由对点组对称性稳定的多方拓扑半学的令人兴奋的预测。莱特牧师。 108(2012)266802],我们研究一类各向异性多翼半学的隧道现象。我们发现,各向异性参数$λ$和入射角$θ$的远处检测器将测量不同数量的传播传播模式。我们从相图的角度提出了这些发现,这些发现对于具有固定波数$ k $的传入波 - 能量不是固定的。为了更深入地了解这种现象,我们将重点放在各向异性二次Weyl-semimetal的最简单情况下,并在分析和数值上分析隧道系数,以确认相图的观察结果。我们的结果表明非分析行为,这是相变的标志。这是与统计力学已知的相变形式类比的动机。具体来说,我们认为隧道问题的长距离极限取代了统计力学中热力学限制的位置。更确切地说,找到与最近开发的形式主义的直接形式联系以进行动态相变[有关物理学进展的报告81(5)(2018)054001]。我们建议这种比喻与相变的类比可以帮助对外来半学分中的运输特性进行分类。
Motivated by the exciting prediction of Multi-Weyl topological semimetals that are stabilized by point group symmetries [Phys. Rev. Lett. 108 (2012) 266802], we study tunneling phenomena for a class of anisotropic Multi-Weyl semimetals. We find that a distant detector for different ranges of an anisotropy parameter $λ$ and incident angle $θ$ will measure a different number of propagating transmitted modes. We present these findings in terms of phase diagrams that is valid for an incoming wave with fixed wavenumber $k$--energy is not fixed. To gain a deeper understanding of this phenomenon we then focus on the simplest case of an anisotropic quadratic Weyl-semimetal and analyze tunneling coefficients analytically and numerically to confirm the observations from the phase diagram. Our results show non-analytical behavior, which is the hallmark of a phase transition. This serves as a motivation to make a formal analogy with phase transitions that are known from statistical mechanics. Specifically, we argue that the long distance limit in our tunneling problem takes the place of the thermodynamic limit in statistical mechanics. More precisely, find a direct formal connection to the recently developed formalism for dynamical phase transitions [Reports on Progress in Physics 81 (5) (2018) 054001]. We propose that this analogy to phase transitions can help classify transport properties in exotic semimetals.