论文标题

GCD和LCM的算术功能的$ k $二维球形总结的估计值

Estimates for $k$-dimensional spherical summations of arithmetic functions of the GCD and LCM

论文作者

Heyman, Randell, Tóth, László

论文摘要

令$ k \ ge 2 $为固定整数。我们考虑类型$ \ sum_ {n_1^2+\ cdots+n_k^2 \ le x} f(n_1,\ ldots,n_k)$的总和,取代了$ k $ - diepermentional-demensional球形区域$ \ \ \ \ \ {(n_1,n_1,n_1,n_k \ ldots,n_k) n_k^2 \ le x \} $,其中$ f:{\ bbb z}^k \ to {\ bbb c} $是给定函数。特别是,我们推断出具有剩余术语的渐近公式的球形求和$ \ sum_ {n_1^2+ \ cdots+ n_k^2 \ le x} f(((n_1,\ ldots,n_k))$和$ \ sum___________ { f([n_1,\ ldots,n_k])$,涉及整数的gcd和lcm $ n_1,\ ldots,n_k $,其中$ f:{\ bbb n} \ to {\ bbb c} $属于某些类别的功能类别。

Let $k\ge 2$ be a fixed integer. We consider sums of type $\sum_{n_1^2+\cdots+ n_k^2\le x} F(n_1,\ldots,n_k)$, taken over the $k$-dimensional spherical region $\{(n_1,\ldots,n_k)\in {\Bbb Z}^k: n_1^2+\cdots+ n_k^2\le x\}$, where $F:{\Bbb Z}^k\to {\Bbb C}$ is a given function. In particular, we deduce asymptotic formulas with remainder terms for the spherical summations $\sum_{n_1^2+\cdots+ n_k^2\le x} f((n_1,\ldots,n_k))$ and $\sum_{n_1^2+\cdots+ n_k^2\le x} f([n_1,\ldots,n_k])$, involving the GCD and LCM of the integers $n_1,\ldots,n_k$, where $f:{\Bbb N}\to {\Bbb C}$ belongs to certain classes of functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源