论文标题
减少后影响世界的气氛:早期地球
Reduced atmospheres of post-impact worlds: The early Earth
论文作者
论文摘要
影响可能对早期地球的大气化学产生了重大影响。撞击器中减少的阶段(例如,金属铁)可以减少地球的H $ _2 $ o库存,以产生富含h $ _2 $的大量氛围。尽管以前的研究集中在这种情况下影响器与大气之间的相互作用,但我们研究了两个进一步的影响,1)撞击器在目标内部,目标大气和逃脱目标之间的影响期间影响器的铁库存分布,以及2)2)后影响大气与影响生成的甲壳相之间的相互作用。我们发现,这两种效应可能会彼此平衡,融化了大气相互作用可恢复最初由熔体相吸收的大气的减少功率。对于$ \ sim10^{22} \,\ mathrm {kg} $影响器,当通过熔体阶段积聚的铁完全可用以减少这种熔体时,我们找到了h $ _2 $ _2 $ countar Montion $ \ sim10^4 \ sim11^4 \,\ Mathrm \,\ Mathrm {m \,cm \ sim \, ($ p \ mathrm {h2} \ sim120 \,\ mathrm {bars} \ mathrm {,} 〜x_ \ x_ \ mathrm {h2} \ sim0.77 $),与先前的估计一致。但是,当铁无法减少熔体时(例如,大直径斑点下沉)时,我们发现h $ _2 $的h $ _2 $($ 7 \ times10^2-5 \ times10^3 \,\ mathrm {mmathrm {moles {moles {moles \,cm^{-2}}} $, $ p \ mathrm {h2} \ lyseSim60 \,\ mathrm {bars} \ mathrm {,} 〜x_ \ mathrm {h2} \ sillsim0.41 $)。这些较低的h $ _2 $丰度足够高,以至于益生元化学重要的物种可以形成(例如NH3,HCN),但足够低,以至于抑制了与高度减少气氛相关的温室加热效应,这对这种化学有问题。在撞击后,在确定大气的降低和重新溶解的熔体池的降低功率方面,由撞击产生的熔融相积聚了铁的方式至关重要。
Impacts may have had a significant effect on the atmospheric chemistry of the early Earth. Reduced phases in the impactor (e.g., metallic iron) can reduce the planet's H$_2$O inventory to produce massive atmospheres rich in H$_2$. Whilst previous studies have focused on the interactions between the impactor and atmosphere in such scenarios, we investigate two further effects, 1) the distribution of the impactor's iron inventory during impact between the target interior, target atmosphere, and escaping the target, and 2) interactions between the post-impact atmosphere and the impact-generated melt phase. We find that these two effects can potentially counterbalance each other, with the melt-atmosphere interactions acting to restore reducing power to the atmosphere that was initially accreted by the melt phase. For a $\sim10^{22}\,\mathrm{kg}$ impactor, when the iron accreted by the melt phase is fully available to reduce this melt, we find an equilibrium atmosphere with H$_2$ column density $\sim10^4\,\mathrm{moles\,cm^{-2}}$ ($p\mathrm{H2}\sim120\,\mathrm{bars}\mathrm{,}~X_\mathrm{H2}\sim0.77$), consistent with previous estimates. However, when the iron is not available to reduce the melt (e.g., sinking out in large diameter blobs), we find significantly less H$_2$ ($7\times10^2-5\times10^3\,\mathrm{moles\,cm^{-2}}$, $p\mathrm{H2}\lesssim60\,\mathrm{bars}\mathrm{,}~X_\mathrm{H2}\lesssim0.41$). These lower H$_2$ abundances are sufficiently high that species important to prebiotic chemistry can form (e.g., NH3, HCN), but sufficiently low that the greenhouse heating effects associated with highly reducing atmospheres, which are problematic to such chemistry, are suppressed. The manner in which iron is accreted by the impact-generated melt phase is critical in determining the reducing power of the atmosphere and re-solidified melt pool in the aftermath of impact.