论文标题

来自不同基于位置的数据源产生的人类移动网络分析是否在跨尺度上产生相似的结果?

Do Human Mobility Network Analyses Produced from Different Location-based Data Sources Yield Similar Results across Scales?

论文作者

Hsu, Chia-Wei, Liu, Chenyue, Nguyen, Kiet Minh, Chien, Yu-Heng, Mostafavi, Ali

论文摘要

传感技术和基于位置的数据的新兴可用性正在推动对科学和工程研究中人类流动网络的分析以及流行病预测和缓解,城市规划,交通工程,应急响应和业务发展的扩展。但是,研究采用由不同基于位置的数据提供商提供的数据集,以及从不同数据集获得的人类流动性测量和结果的程度尚不清楚。为了解决这一差距,在这项研究中,我们检查了三个基于位置的数据源:Spoceus,X-Mode和Veraset,以分析不同尺度上大都市地区的人类流动性网络:全球,子结构和微观。从三个数据集获得了不同的结果,这表明网络模型和对数据集的措施的敏感性。这一发现对基于不同数据集的人类流动性和城市动态的广义理论具有重要意义。这些发现还强调了需要经过经验的人类运动数据集,以作为测试人类流动性数据集代表性的基准。各个科学和技术领域的研究人员和决策者应认识到人类流动性结果对数据集选择的敏感性,并根据数据点的代表性和结果的可转移性来确定所选数据集的地面流程。

The burgeoning availability of sensing technology and location-based data is driving the expansion of analysis of human mobility networks in science and engineering research, as well as in epidemic forecasting and mitigation, urban planning, traffic engineering, emergency response, and business development. However, studies employ datasets provided by different location-based data providers, and the extent to which the human mobility measures and results obtained from different datasets are comparable is not known. To address this gap, in this study, we examined three prominent location-based data sources: Spectus, X-Mode, and Veraset to analyze human mobility networks across metropolitan areas at different scales: global, sub-structure, and microscopic. Dissimilar results were obtained from the three datasets, suggesting the sensitivity of network models and measures to datasets. This finding has important implications for building generalized theories of human mobility and urban dynamics based on different datasets. The findings also highlighted the need for ground-truthed human movement datasets to serve as the benchmark for testing the representativeness of human mobility datasets. Researchers and decision-makers across different fields of science and technology should recognize the sensitivity of human mobility results to dataset choice and develop procedures for ground-truthing the selected datasets in terms of representativeness of data points and transferability of results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源