论文标题

3D重力中的脱壳分区功能

Off-shell Partition Functions in 3d Gravity

论文作者

Eberhardt, Lorenz

论文摘要

我们通过规范量化探索具有负宇宙常数的三维重力。我们专注于手性重力,该重力与$ \ mathrm {psl}的单个副本有关(2,\ mathbb {r})$ chern-simons理论,并且更容易在规范量化中处理。其初始值表面$σ$的相位空间由Riemann表面的适当模量空间给出。我们使用几何量化来计算手性重力的分区函数在$σ\ times \ times \ mathrm {s}^1 $的三个manifolds上,其中$σ$可以具有渐近边界。这些拓扑中的大多数都不接受经典的解决方案,因此不适合直接的半经路径积分计算。我们使用一个索引定理,将分区函数表达为相位空间上特征类的积分。在存在$ n $渐近边界的情况下,我们使用来自eproimiant的共同体学的技术将积分定位到$ \ overline {\ Mathcal {m}} _ {g,n} $上的有限维积分,我们在低属案例中评估。较高的属分区功能迅速变得复杂,因为它们以振荡方式取决于牛顿的常数。有一个确切的含义,可以隔离我们称为假分区功能的非振荡部分。我们确定有一个拓扑递归计算任意riemann表面$σ$的假分区功能。在缩放限制的情况下,模型将减少到JT重力,我们的方法提供了一种新颖的方法,可以通过等效定位来计算JT分区功能。

We explore three-dimensional gravity with negative cosmological constant via canonical quantization. We focus on chiral gravity which is related to a single copy of $\mathrm{PSL}(2,\mathbb{R})$ Chern-Simons theory and is simpler to treat in canonical quantization. Its phase space for an initial value surface $Σ$ is given by the appropriate moduli space of Riemann surfaces. We use geometric quantization to compute partition functions of chiral gravity on three-manifolds of the form $Σ\times \mathrm{S}^1$, where $Σ$ can have asymptotic boundaries. Most of these topologies do not admit a classical solution and are thus not amenable to a direct semiclassical path integral computation. We use an index theorem that expresses the partition function as an integral of characteristic classes over phase space. In the presence of $n$ asymptotic boundaries, we use techniques from equivariant cohomology to localize the integral to a finite-dimensional integral over $\overline{\mathcal{M}}_{g,n}$, which we evaluate in low genus cases. Higher genus partition functions quickly become complicated since they depend in an oscillatory way on Newton's constant. There is a precise sense in which one can isolate the non-oscillatory part which we call the fake partition function. We establish that there is a topological recursion that computes the fake partition functions for arbitrary Riemann surfaces $Σ$. There is a scaling limit in which the model reduces to JT gravity and our methods give a novel way to compute JT partition functions via equivariant localization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源