论文标题

比较定理的Lorentzian长度空间具有较低的时间曲率边界

Comparison theorems for Lorentzian length spaces with lower timelike curvature bounds

论文作者

Barrera, Waldemar, de Oca, Luis Montes, Solis, Didier A.

论文摘要

在本文中,我们介绍了洛伦兹预性空间的归一化角度的概念。这个概念使我们能够证明与洛伦兹的预性空间的下面的定义相当的定义。具体而言,我们建立了一些比较定理,称为Toponogov定理的本地Lorentzian版本和Alexandrov convexity属性。最后,作为应用程序,我们获得了非第二弯曲全球双曲线洛伦兹长度空间的第一个变化公式。

In this article we introduce a notion of normalized angle for Lorentzian pre-length spaces. This concept allows us to prove some equivalences to the definition of timelike curvature bounds from below for Lorentzian pre-length spaces. Specifically, we establish some comparison theorems known as the local Lorentzian version of the Toponogov theorem and the Alexandrov convexity property. Finally, as an application we obtain a first variation Formula for non-negatively curved globally hyperbolic Lorentzian length spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源