论文标题
使用自然语言处理从阿尔茨海默氏病患者的临床笔记中提取睡眠信息
Extraction of Sleep Information from Clinical Notes of Patients with Alzheimer's Disease Using Natural Language Processing
论文作者
论文摘要
阿尔茨海默氏病(AD)是美国最常见的痴呆形式。睡眠是与生活方式相关的因素之一,对老年人的最佳认知功能至关重要。但是,缺乏研究睡眠与广告发生率之间的关联的研究。进行此类研究的主要瓶颈是,获取睡眠信息的传统方式是时必的,效率低下,不可降低的,并且仅限于患者的主观经验。从Adsleep的570个随机抽样临床音符文档的手动注释中,创建了一个金标准数据集,该文档是从匹兹堡大学医学中心(UPMC)检索的192,000名识别7,266名AD患者的192,000名诊断临床注释的语料库。我们开发了一种基于规则的自然语言处理(NLP)算法,机器学习模型和大型语言模型(LLM)基于基于NLP的NLP算法,以自动化与睡眠相关概念提取的提取,包括打nor,睡眠问题,睡眠问题,睡眠不良,日间睡眠,夜间睡觉,夜间锻炼和睡眠时间,来自金色标准的数据。基于规则的NLP算法在所有与睡眠有关的概念中都达到了F1的最佳性能。在积极的预测价值(PPV)方面,基于规则的NLP算法在白天嗜睡和睡眠持续时间,机器学习模型:0.95和午睡时达到1.00,睡眠不良质量为0.86,打呼nord 0.90;且易芬太的Llama2的夜间醒来达到0.93,睡眠问题为0.89,睡眠时间为1.00。结果表明,基于规则的NLP算法始终达到所有睡眠概念的最佳性能。这项研究的重点是AD患者的临床注意事项,但可以扩展到其他疾病的一般睡眠信息提取。
Alzheimer's Disease (AD) is the most common form of dementia in the United States. Sleep is one of the lifestyle-related factors that has been shown critical for optimal cognitive function in old age. However, there is a lack of research studying the association between sleep and AD incidence. A major bottleneck for conducting such research is that the traditional way to acquire sleep information is time-consuming, inefficient, non-scalable, and limited to patients' subjective experience. A gold standard dataset is created from manual annotation of 570 randomly sampled clinical note documents from the adSLEEP, a corpus of 192,000 de-identified clinical notes of 7,266 AD patients retrieved from the University of Pittsburgh Medical Center (UPMC). We developed a rule-based Natural Language Processing (NLP) algorithm, machine learning models, and Large Language Model(LLM)-based NLP algorithms to automate the extraction of sleep-related concepts, including snoring, napping, sleep problem, bad sleep quality, daytime sleepiness, night wakings, and sleep duration, from the gold standard dataset. Rule-based NLP algorithm achieved the best performance of F1 across all sleep-related concepts. In terms of Positive Predictive Value (PPV), rule-based NLP algorithm achieved 1.00 for daytime sleepiness and sleep duration, machine learning models: 0.95 and for napping, 0.86 for bad sleep quality and 0.90 for snoring; and LLAMA2 with finetuning achieved PPV of 0.93 for Night Wakings, 0.89 for sleep problem, and 1.00 for sleep duration. The results show that the rule-based NLP algorithm consistently achieved the best performance for all sleep concepts. This study focused on the clinical notes of patients with AD, but could be extended to general sleep information extraction for other diseases.