论文标题

从计算机断层扫描图像中的快速,健壮的股骨分割,用于患者特异性髋部骨折筛查

Fast and Robust Femur Segmentation from Computed Tomography Images for Patient-Specific Hip Fracture Risk Screening

论文作者

Bjornsson, Pall Asgeir, Baker, Alexander, Fleps, Ingmar, Pauchard, Yves, Palsson, Halldor, Ferguson, Stephen J., Sigurdsson, Sigurdur, Gudnason, Vilmundur, Helgason, Benedikt, Ellingsen, Lotta Maria

论文摘要

骨质疏松症是一种常见的骨骼疾病,可增加骨折的风险。基于有限元分析的嘻哈风险筛选方法取决于分段计算机断层扫描(CT)图像;但是,当前的股骨分割方法需要对大数据集进行手动描述。在这里,我们提出了一个深层神经网络,用于对CT的近端股骨进行完全自动化,准确和快速分割。对一组1147个具有地面真相分割的近端股骨的评估表明,我们的方法易于筛选髋骨骨折风险筛查,这使我们更接近临床上可行的选择,用于筛查在危险中的髋部骨折易感性。

Osteoporosis is a common bone disease that increases the risk of bone fracture. Hip-fracture risk screening methods based on finite element analysis depend on segmented computed tomography (CT) images; however, current femur segmentation methods require manual delineations of large data sets. Here we propose a deep neural network for fully automated, accurate, and fast segmentation of the proximal femur from CT. Evaluation on a set of 1147 proximal femurs with ground truth segmentations demonstrates that our method is apt for hip-fracture risk screening, bringing us one step closer to a clinically viable option for screening at-risk patients for hip-fracture susceptibility.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源