论文标题
磁场调整平行旋转条纹顺序和pseudoGap量子量关键点附近的波动$ _ {1.36} $ nd $ _ {0.4} $ sr $ _ {0.24} $ cuo $ _4 $ _4 $
Magnetic Field Tuning of Parallel Spin Stripe Order and Fluctuations near the Pseudogap Quantum Critical Point in La$_{1.36}$Nd$_{0.4}$Sr$_{0.24}$CuO$_4$
论文作者
论文摘要
单层,孔掺杂的丘陵酸盐系统la $ _ {1.6-x} $ nd $ _ {0.4} $ _x $ _x $ cuo $ _4 $(nd-lsco)中的量子关键点接近$ x $ = 0.23,已被认为是理解高温高温超容量的组织原理。我们在ND-LSCO上以最佳和高掺杂的ND-LSCO上的中子衍射作品显示出存在于QCP的静态平行旋转条纹,略微超过$ x $ = 0.24和0.26。我们更仔细地检查了ND-LSCO中零磁场中的平行自旋条纹顺序参数,在这些单晶体中,H // C最高为8 t。与较低掺杂时的早期研究相反,我们观察到H // c超过$ \ sim $ 2.5 t消除了与平行自旋条纹相关的不兑换的准bragg峰。但是这种弹性散射不会被田野破坏。相反,它被转移到相应的{\ textbf {q} = 0}布拉格位置,这意味着参与旋转条纹的旋转已经两极化。高场处的无弹性中子散射测量表明,低能,平行自旋条纹波动和旋转间隙的证据,$δ_{spin} $ = 3 $ = 3 $ \ pm $ 0.5 meV,$ x $ x $ = 0.24。证明这与旋转间隙测量值是五个不同家族的Cuprate超导体的超导t $ _c $的函数,这是遵循近似线性关系的$δ_{spin} $ = 3.5 k $ _b $ _b $ _b $ _b $ t $ _c $。
A quantum critical point in the single layer, hole-doped cuprate system La$_{1.6-x}$Nd$_{0.4}$Sr$_x$CuO$_4$ (Nd-LSCO), near $x$ = 0.23 has been proposed as an organizing principle for understanding high temperature superconductivity. Our earlier neutron diffraction work on Nd-LSCO at optimal and high doping revealed static parallel spin stripes to exist out to the QCP and slightly beyond, at $x$ = 0.24 and 0.26. We examine more closely the parallel spin stripe order parameter in Nd-LSCO in both zero magnetic field and fields up to 8 T for H // c in these single crystals. In contrast to earlier studies at lower doping, we observe that H //c in excess of $\sim$ 2.5 T eliminates the incommensurate quasi-Bragg peaks associated with parallel spin stripes. But this elastic scattering is not destroyed by the field; rather it is transferred to commensurate {\textbf{Q} = 0} Bragg positions, implying that the spins participating in the spin stripes have been polarized. Inelastic neutron scattering measurements at high fields show an increase in the low energy, parallel spin stripe fluctuations and evidence for a spin gap, $Δ_{spin}$= 3 $\pm$ 0.5 meV for Nd-LSCO with $x$ = 0.24. This is shown to be consistent with spin gap measurements as a function of superconducting T$_C$ over five different families of cuprate superconductors, which follow the approximate linear relation, $Δ_{spin}$ = 3.5 k$_B$T$_C$.