论文标题
Lorentzian长度空间的双曲角和时机曲率边界
Hyperbolic angles in Lorentzian length spaces and timelike curvature bounds
论文作者
论文摘要
在Kunzinger和Sämann(Ann。Glob。Anal。Geom。54(3):399--447,2018)中开发的Lorentzian(Pre-)长度空间的合成几何框架中,我们引入了一个屈曲角度的概念,即音时间曲线和相关概念之间的角度和相关概念之间的杂音角度和相关概念之间的概念。这为该理论的进一步发展提供了宝贵的技术工具,并为文章的主要结果铺平了道路,这是具有角度单调性条件的时间型曲率边界(通过三角比较定义)的表征。此外,我们改善了下面的曲率曲率空间的地球非分支结果。
Within the synthetic-geometric framework of Lorentzian (pre-)length spaces developed in Kunzinger and Sämann (Ann. Glob. Anal. Geom. 54(3):399--447, 2018) we introduce a notion of a hyperbolic angle, an angle between timelike curves and related concepts like timelike tangent cone and exponential map. This provides valuable technical tools for the further development of the theory and paves the way for the main result of the article, which is the characterization of timelike curvature bounds (defined via triangle comparison) with an angle monotonicity condition. Further, we improve on a geodesic non-branching result for spaces with timelike curvature bounded below.