论文标题

JanusaqP:动态近似查​​询处理的有效分区树维护

JanusAQP: Efficient Partition Tree Maintenance for Dynamic Approximate Query Processing

论文作者

Liang, Xi, Sintos, Stavros, Krishnan, Sanjay

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Approximate query processing over dynamic databases, i.e., under insertions/deletions, has applications ranging from high-frequency trading to internet-of-things analytics. We present JanusAQP, a new dynamic AQP system, which supports SUM, COUNT, AVG, MIN, and MAX queries under insertions and deletions to the dataset. JanusAQP extends static partition tree synopses, which are hierarchical aggregations of datasets, into the dynamic setting. This paper contributes new methods for: (1) efficient initialization of the data synopsis in the presence of incoming data, (2) maintenance of the data synopsis under insertions/deletions, and (3) re-optimization of the partitioning to reduce the approximation error. JanusAQP reduces the error of a state-of-the-art baseline by more than 60% using only 10% storage cost. JanusAQP can process more than 100K updates per second in a single node setting and keep the query latency at a millisecond level.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源