论文标题

部分可观测时空混沌系统的无模型预测

Visual-based Positioning and Pose Estimation

论文作者

Phon-Amnuaisuk, Somnuk, Murata, Ken T., Kovavisaruch, La-Or, Lim, Tiong-Hoo, Pavarangkoon, Praphan, Mizuhara, Takamichi

论文摘要

深度学习和计算机视觉的最新进展为研究高水平的视觉分析任务(例如人类本地化和人类姿势估计)提供了绝佳的机会。尽管在最近的报告中,人类本地化和人类姿势估计的表现显着改善,但它们并不完美,并且可以在视频框架之间进行错误的定位和姿势估计。关于这些技术将这些技术集成到通用管道中的研究仍然缺乏这些错误引入的噪声。本文填补了缺失的研究。我们探索并开发了两个工作管道,这些管道适合基于视觉的定位和姿势估计任务。对拟议管道的分析是在羽毛球游戏上进行的。我们表明,通过检测跟踪的概念可以很好地工作,并且可以使用来自附近框架的信息有效地处理位置和姿势的错误。结果表明,基于视觉的定位和姿势估计可以通过良好的空间和时间分辨率提供位置和姿势估计。

Recent advances in deep learning and computer vision offer an excellent opportunity to investigate high-level visual analysis tasks such as human localization and human pose estimation. Although the performance of human localization and human pose estimation has significantly improved in recent reports, they are not perfect and erroneous localization and pose estimation can be expected among video frames. Studies on the integration of these techniques into a generic pipeline that is robust to noise introduced from those errors are still lacking. This paper fills the missing study. We explored and developed two working pipelines that suited the visual-based positioning and pose estimation tasks. Analyses of the proposed pipelines were conducted on a badminton game. We showed that the concept of tracking by detection could work well, and errors in position and pose could be effectively handled by a linear interpolation technique using information from nearby frames. The results showed that the Visual-based Positioning and Pose Estimation could deliver position and pose estimations with good spatial and temporal resolutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源