论文标题

谎言代数成本功能设计用于控制谎言组的控制

Lie Algebraic Cost Function Design for Control on Lie Groups

论文作者

Teng, Sangli, Clark, William, Bloch, Anthony, Vasudevan, Ram, Ghaffari, Maani

论文摘要

本文通过在其谎言代数中设计控制目标来展示谎言组的控制框架。由于其非线性性质和系统参数化的困难,对谎言组的控制是具有挑战性的。现有的方法在谎言组上设计控制目标然后得出控制器设计的梯度是不平凡的,并且在跟踪控制方面可能会导致缓慢的收敛性。我们表明,使用适当的左右指标,将成本函数的梯度设置为LIE代数中的跟踪误差,从而导致二次lyapunov函数,该函数可以实现全球指数收敛。在PD控制案例中,我们表明,即使初始错误接近SO中的$π$,我们的控制器也可以保持指数收敛率(3)。我们还在轨迹优化中展示了该提出的框架的优点。提出的成本函数使迭代线性二次调节器(ILQR)的收敛速度要比差分动态编程(DDP)快得多,当初始轨迹初始初始化时,具有良好的成本函数的收敛速度(3)。

This paper presents a control framework on Lie groups by designing the control objective in its Lie algebra. Control on Lie groups is challenging due to its nonlinear nature and difficulties in system parameterization. Existing methods to design the control objective on a Lie group and then derive the gradient for controller design are non-trivial and can result in slow convergence in tracking control. We show that with a proper left-invariant metric, setting the gradient of the cost function as the tracking error in the Lie algebra leads to a quadratic Lyapunov function that enables globally exponential convergence. In the PD control case, we show that our controller can maintain an exponential convergence rate even when the initial error is approaching $π$ in SO(3). We also show the merit of this proposed framework in trajectory optimization. The proposed cost function enables the iterative Linear Quadratic Regulator (iLQR) to converge much faster than the Differential Dynamic Programming (DDP) with a well-adopted cost function when the initial trajectory is poorly initialized on SO(3).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源