论文标题
分解简介
An introduction to decomposition
论文作者
论文摘要
我们回顾了“分解”的工作,这是具有1型对称性的二维理论的属性,更一般而言,具有(D-1) - 形式对称性的D维理论。分解是这样的观察结果,即这种量子场理论等同于(“分解为”)其他QFT的脱节工会,在这种情况下称为“宇宙”。示例包括在量规组的子组下具有物质不变的二维规定理论和Orbifolds。分解解释并关联了这些理论的几种物理属性 - 例如,对Instantons的限制是组成宇宙的贡献之间的“多元宇宙干扰效应”。在2006年首次解决,作为解决堆栈中的弦传播技术问题的一部分,自那以后,Decomposition一直是许多发展的驱动力。我们给出了分解的一般概述,描述了量规理论中产生的分解特征,然后深入研究Orbifolds的细节。最后,我们讨论了最近在二维球形中对王芳构成异常分辨率的应用。这是对会议二维超对称理论和相关主题的诉讼(澳大利亚澳大利亚Matrix Institute,2022年1月)的贡献,概述了那里和其他地方的演讲。
We review work on `decomposition,' a property of two-dimensional theories with 1-form symmetries and, more generally, d-dimensional theories with (d-1)-form symmetries. Decomposition is the observation that such quantum field theories are equivalent to (`decompose into') disjoint unions of other QFTs, known in this context as "universes." Examples include two-dimensional gauge theories and orbifolds with matter invariant under a subgroup of the gauge group. Decomposition explains and relates several physical properties of these theories -- for example, restrictions on allowed instantons arise as a "multiverse interference effect" between contributions from constituent universes. First worked out in 2006 as part of efforts to resolve technical questions in string propagation on stacks, decomposition has been the driver of a number of developments since. We give a general overview of decomposition, describe features of decomposition arising in gauge theories, then dive into specifics for orbifolds. We conclude with a discussion of the recent application to anomaly resolution of Wang-Wen-Witten in two-dimensional orbifolds. This is a contribution to the proceedings of the conference Two-dimensional supersymmetric theories and related topics (Matrix Institute, Australia, January 2022), giving an overview of a talk given there and elsewhere.