论文标题

通过磁重新连接在相对论喷气机和非常高能量发射的起源中,超高能量宇宙射线加速

Ultra-high-energy cosmic ray acceleration by magnetic reconnection in relativistic jets and the origin of very high energy emission

论文作者

Pino, E. De Gouveia Dal, Medina-Torrejon, T. E., Kadowaki, L. H. S., Kowal, G., Rodriguez-Ramirez, J. C.

论文摘要

相对论的喷气机被认为是磁性占主导地位的。这些来源中的磁重新连接可以有效地加速非常高和超高的能量宇宙射线。在这里,我们直接通过三维相对论磁性水动力学(3D-RMHD)模拟,直接证明了这一点,没有向大尺度推断出大尺度。我们在相对论射流区域中注入数千个低能质子,该质子与从磁性到动力学主导的过渡相对应,其中其磁化参数为$σ\ sim 1 $。在该区域中,有有效的快速重新连接,它是由射流的螺旋磁场中的电流驱动 - 旋转不稳定性(CDKI)湍流自然驱动的。我们发现,在重新连接区域(以及在最后阶段的漂移)到能量到能量$ e \ sim 10^{18} $ eV的背景磁场$ b \ sim 0.1 $ g,和$ e \ sim 10^{20^20} $ sim的频率的依据,$ b \ sim 10^{20} $ ev的依据,我们的模拟量也有弹药,我们的磁场也有弱的依据。在颗粒上的能量$ r_ {acc} \ propto e^{ - 0.1} $,指数增长的特征。加速粒子的能量光谱以频谱指数$ p \ sim -1.2 $开发幂律尾巴。当包括粒子损失和反馈到背景等离子体中时,频谱的这种硬度必须降低。我们的结果可以解释在非常高能带和相关的中微子发射处的大弹药发射中观察到的通量变化。还讨论了我们的结果在Blazars MRK 421和TXS 0506+056中的成功应用。

Relativistic jets are believed to be born magnetically dominated. Very and ultra-high energy cosmic rays can be efficiently accelerated by magnetic reconnection in these sources. We here demonstrate this directly, with no extrapolations to large scales, by means of three-dimensional relativistic magnetohydrodynamical (3D-RMHD) simulations of a Poyinting flux dominated jet. We inject thousands of low-energy protons in the region of a relativistic jet that corresponds to the transition from magnetically to kinetically dominated, where its magnetization parameter is $σ\sim 1$. In this region, there is efficient fast magnetic reconnection which is naturally driven by current-driven-kink instability (CDKI) turbulence in the helical magnetic fields of the jet. We find that the particles are accelerated by Fermi process in the reconnection regions (and by drift in the final stages) up to energies $E \sim 10^{18}$ eV for background magnetic fields $B \sim 0.1$ G, and $E \sim 10^{20}$ eV for $B \sim 10$ G. We have also derived from the simulations the acceleration rate due to magnetic reconnection which has a weak dependence on the particles energy $ r_{acc} \propto E^{-0.1}$, characteristic of exponential growth. The energy spectrum of the accelerated particles develops a power-law tail with spectral index $p \sim -1.2$. This hardness of the spectrum must decrease when particle losses and feedback into the background plasma are included. Our results can explain observed flux variability in the emission of blazars at the very high energy band as well as the associated neutrino emission. Successful applications of our results to the blazars MRK 421 and TXS 0506+056 are also discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源