论文标题

关于由高斯曲率的力量翻译的超曲面的存在

On existence of hypersurfaces translating by powers of Gauss curvature

论文作者

Choi, Beomjun

论文摘要

在本文中,我们在$ \ mathbb r^{n+1} $中构造完整的凸出曲面,该$在powers $α\ in(0,\ frac1 {n+2})$的流下翻译为高斯曲线的$。每种解决方案的水平集渐近地缩小了由$ \ Mathbb r^n $的高斯曲率的功率$ \fracα{1-α} $的流量缩小的孤子。例如,我们的构造揭示了翻译人员的存在,其水平集合到球体,单纯形,超立方体等。翻译孤子作为一个家庭存在,其参数对应于雅各比字段,这是渐近谱周围线性化方程的解决方案。

In this paper we construct complete convex hypersurfaces in $\mathbb R^{n+1}$ which translate under the flow by powers $α\in (0, \frac1{n+2})$ of the Gauss curvature. The level set of each solution is asymptotic to a shrinking soliton for the flow by power $\frac α{1-α}$ of the Gauss curvature in $\mathbb R^n$. For example, our construction reveals the existence of translators whose level set converges to the sphere, simplex, hypercube and so on. The translating solitons exist as a family whose parameters correspond to Jacobi fields, solutions to linearized equation around the asymptotic profile.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源