论文标题
彩虹集团细分
Rainbow clique subdivisions
论文作者
论文摘要
我们表明,对于任何整数$ t \ ge 2 $,每个适当的边缘彩色$ n $ vertex图,平均度至少$(\ log n)^{2+o(1)} $包含一个尺寸$ t $的完整图的彩虹细分。请注意,该界限在下限的$(\ log n)^{1+O(1)} $系数之内。这也意味着彩虹图恩周期数的结果。
We show that for any integer $t \ge 2$, every properly edge colored $n$-vertex graph with average degree at least $(\log n)^{2+o(1)}$ contains a rainbow subdivision of a complete graph of size $t$. Note that this bound is within $(\log n)^{1+o(1)}$ factor of the lower bound. This also implies a result on the rainbow Turán number of cycles.