论文标题

转向矢量束

Turning vector bundles

论文作者

Crowley, Diarmuid, Nagy, Csaba, Sims, Blake, Yang, Huijun

论文摘要

我们定义了排名$ 2K $ vector捆绑$ e \ to b $的转折,为捆绑自动形态的同质性,$ \ mathbb {id} _e $,$ e $的身份,$ e $,to $ - \ m artbb {idbb {id} _e} _e $ $ nity bundle $ n $ n $ n $(e)。我们调查矢量束何时承认转弯并发展转弯理论及其障碍。特别是,我们确定哪个排名$ 2K $捆绑在$ 2K $ -SPHERE上。 如果捆绑包是可转弯的,则可以定位。在另一个方向上,复杂的捆绑包被捆绑捆绑包,而在有限$ cw $ - complexes上排名稳定范围的捆绑包,Bott证明了他的周期性定理的证明表明,$ e $的转折定义了$ e $的复杂结构的同型复杂结构。另一方面,我们给出了排名$ 2K $捆绑的示例,超过$ 2K $二维的空间,包括大约2k $ -manifolds的切线捆绑包,这些捆绑符合$ 2K $ -MANIFOLDS,这些捆绑包可转弯,但不承认一个复杂的结构。因此,转弯的捆绑包可以看作是复杂束的概括。 我们还概括了转向其他设置的定义,包括其他自动​​形态的路径,并将向量捆绑包的概括性转盘与其量表组的拓扑结合以及某些Samelson产品的计算联系起来。

We define a turning of a rank-$2k$ vector bundle $E \to B$ to be a homotopy of bundle automorphisms $ψ_t$ from $\mathbb{Id}_E$, the identity of $E$, to $-\mathbb{Id}_E$, minus the identity, and call a pair $(E, ψ_t)$ a turned bundle. We investigate when vector bundles admit turnings and develop the theory of turnings and their obstructions. In particular, we determine which rank-$2k$ bundles over the $2k$-sphere are turnable. If a bundle is turnable, then it is orientable. In the other direction, complex bundles are turned bundles and for bundles over finite $CW$-complexes with rank in the stable range, Bott's proof of his periodicity theorem shows that a turning of $E$ defines a homotopy class of complex structure on $E$. On the other hand, we give examples of rank-$2k$ bundles over $2k$-dimensional spaces, including the tangent bundles of some $2k$-manifolds, which are turnable but do not admit a complex structure. Hence turned bundles can be viewed as a generalisation of complex bundles. We also generalise the definition of turning to other settings, including other paths of automorphisms, and we relate the generalised turnability of vector bundles to the topology of their gauge groups and the computation of certain Samelson products.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源