论文标题
DIFFMD:分子动力学模拟的几何扩散模型
DiffMD: A Geometric Diffusion Model for Molecular Dynamics Simulations
论文作者
论文摘要
长期以来,分子动力学(MD)已成为模拟第一原理复杂原子系统的事实上的选择。最近,深度学习模型成为加速MD的流行方式。尽管如此,现有模型仍取决于中间变量,例如势能或力场来更新原子位置,这需要进行其他计算才能执行后传播。为了放弃这一要求,我们通过直接估计分子构象对数密度的梯度来提出一种称为DIFFMD的新型模型。 DIFFMD依赖于基于分数的denodion扩散生成模型,该模型会根据原子加速度的条件噪声散布分子结构,并在先前的时间范围内将构象视为先前的抽样分布。建模这样的构象产生过程的另一个挑战是,分子是动力学而不是静态的,没有先前的作品严格研究。为了解决这一挑战,我们建议在扩散过程中作为分数函数,以计算相应的梯度。它通过3D球形傅立叶贝塞尔表示,结合了原子运动的方向和速度。通过多次架构改进,我们在MD17和C7O2H10数据集的ISOMER上胜过最先进的基线。这项工作有助于加速材料和药物发现。
Molecular dynamics (MD) has long been the de facto choice for simulating complex atomistic systems from first principles. Recently deep learning models become a popular way to accelerate MD. Notwithstanding, existing models depend on intermediate variables such as the potential energy or force fields to update atomic positions, which requires additional computations to perform back-propagation. To waive this requirement, we propose a novel model called DiffMD by directly estimating the gradient of the log density of molecular conformations. DiffMD relies on a score-based denoising diffusion generative model that perturbs the molecular structure with a conditional noise depending on atomic accelerations and treats conformations at previous timeframes as the prior distribution for sampling. Another challenge of modeling such a conformation generation process is that a molecule is kinetic instead of static, which no prior works have strictly studied. To solve this challenge, we propose an equivariant geometric Transformer as the score function in the diffusion process to calculate corresponding gradients. It incorporates the directions and velocities of atomic motions via 3D spherical Fourier-Bessel representations. With multiple architectural improvements, we outperform state-of-the-art baselines on MD17 and isomers of C7O2H10 datasets. This work contributes to accelerating material and drug discovery.